Suppr超能文献

打破对称:工程单链二聚体链霉亲和素作为人工金属酶的主体。

Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.

机构信息

Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland.

出版信息

J Am Chem Soc. 2019 Oct 9;141(40):15869-15878. doi: 10.1021/jacs.9b06923. Epub 2019 Sep 25.

Abstract

The biotin-streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [CpIr(biot--L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [CpIr(biot--L)Cl]·scdSav with a structurally related [Cp*Ir(biot--L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford ()-salsolidine in 90% ee and >17 000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications.

摘要

生物素-链霉亲和素技术被广泛用于设计人工金属酶(ArMs),这些酶可以催化十几种不同的反应。尽管具有多功能性,但链霉亲和素(Sav)的同四聚体性质和生物素化辅因子的非协同结合对 ArMs 的遗传优化有两个限制:(i)点突变反映在 Sav 的所有四个亚基中,(ii)生物素化辅因子与 Sav 的非协同结合可能会导致催化性能下降,具体取决于辅因子:生物素结合位点的比例。为了解决这些挑战,我们报告了我们设计(单价)单链二聚体链霉亲和素(scdSav)作为基于 Sav 的 ArMs 支架的努力。scdSav 作为宿主蛋白的多功能性通过使用 [CpIr(biot--L)Cl] 作为辅因子不对称转移氢化前手性亚胺得到了强调。通过利用更精确的生物素结合前庭的遗传微调,可以实现前所未有的活性和选择性,用于还原具有挑战性的前手性亚胺。[CpIr(biot--L)Cl]·scdSav 与结构相关的 [Cp*Ir(biot--L)Cl]·单价 scdSav 的饱和动力学数据和 X 射线结构的比较突出了单价 scdSav 中精确定位的单个生物素化辅因子存在的优势。scdSav 基 ArMs 的实用性通过还原 salsolidine 前体(500 mM)来证明,以 90%ee 和 >17,000 TONs 的产率得到 ()-salsolidine。单价 scdSav 因此为在体内催化和大规模应用中开发更高效的 ArMs 提供了一个多功能支架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e7/6805045/1862590c22d4/ja9b06923_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验