Suppr超能文献

一种用于体内癌症成像的生物磁系统。

A biomagnetic system for in vivo cancer imaging.

作者信息

Flynn E R, Bryant H C

机构信息

Senior Scientific, Albuquerque, NM 87111, USA.

出版信息

Phys Med Biol. 2005 Mar 21;50(6):1273-93. doi: 10.1088/0031-9155/50/6/016. Epub 2005 Mar 2.

Abstract

An array of highly sensitive biomagnetic sensors of the superconducting quantum interference detector (SQUID) type can identify disease in vivo by detecting and imaging microscopic amounts of nanoparticles. We describe in detail procedures and parameters necessary for implementation of in vivo detection through the use of antibody-labelled magnetic nanoparticles as well as methods of determining magnetic nanoparticle properties. We discuss the weak field magnetic sensor SQUID system, the method of generating the magnetic polarization pulse to align the magnetic moments of the nanoparticles, and the measurement techniques to measure their magnetic remanence fields following this pulsed field. We compare these results to theoretical calculations and predict optimal properties of nanoparticles for in vivo detection.

摘要

一系列超导量子干涉探测器(SQUID)类型的高灵敏度生物磁传感器能够通过检测和成像微量纳米颗粒来在体内识别疾病。我们详细描述了通过使用抗体标记的磁性纳米颗粒进行体内检测所需的程序和参数,以及确定磁性纳米颗粒特性的方法。我们讨论了弱场磁传感器SQUID系统、产生磁极化脉冲以使纳米颗粒磁矩对齐的方法,以及在该脉冲场之后测量其剩余磁场的测量技术。我们将这些结果与理论计算进行比较,并预测用于体内检测的纳米颗粒的最佳特性。

相似文献

1
A biomagnetic system for in vivo cancer imaging.
Phys Med Biol. 2005 Mar 21;50(6):1273-93. doi: 10.1088/0031-9155/50/6/016. Epub 2005 Mar 2.
2
Development of a remanence measurement-based SQUID system with in-depth resolution for nanoparticle imaging.
Phys Med Biol. 2009 May 21;54(10):N177-88. doi: 10.1088/0031-9155/54/10/N01. Epub 2009 Apr 27.
3
Carbon nanotube superconducting quantum interference device.
Nat Nanotechnol. 2006 Oct;1(1):53-9. doi: 10.1038/nnano.2006.54.
4
Biomagnetic measurement system for supine subjects with expanded sensor array and real-time noise reduction.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7071-4. doi: 10.1109/EMBC.2015.7320021.
5
Superconducting electronics: the nanoSQUID makes its debut.
Nat Nanotechnol. 2006 Oct;1(1):15-6. doi: 10.1038/nnano.2006.78.
7
SQUID-detected magnetic resonance imaging in microtesla fields.
Annu Rev Biomed Eng. 2007;9:389-413. doi: 10.1146/annurev.bioeng.9.060906.152010.
8
Self-aligned nanoscale SQUID on a tip.
Nano Lett. 2010 Mar 10;10(3):1046-9. doi: 10.1021/nl100009r.
9
Differential diagnosis of prostate lesions with the use of biomagnetic measurements and non-linear analysis.
Urol Res. 2003 Mar;31(1):32-6. doi: 10.1007/s00240-003-0297-2. Epub 2003 Feb 18.
10
Active magnetic shielding for biomagnetic measurement using spatial gradient fields.
Physiol Meas. 2003 Aug;24(3):661-9. doi: 10.1088/0967-3334/24/3/303.

引用本文的文献

1
Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research.
Glob Chall. 2022 Sep 14;7(1):2200009. doi: 10.1002/gch2.202200009. eCollection 2023 Jan.
2
Experimental demonstration of improved magnetorelaxometry imaging performance using optimized coil configurations.
Med Phys. 2022 May;49(5):3361-3374. doi: 10.1002/mp.15594. Epub 2022 Mar 17.
3
Biomarkers and Strategies for Early Detection of Ovarian Cancer.
Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2504-2512. doi: 10.1158/1055-9965.EPI-20-1057. Epub 2020 Oct 13.
4
Early Detection of Ovarian Cancer.
Hematol Oncol Clin North Am. 2018 Dec;32(6):903-914. doi: 10.1016/j.hoc.2018.07.003. Epub 2018 Sep 28.
5
Screening for ovarian cancer: imaging challenges and opportunities for improvement.
Ultrasound Obstet Gynecol. 2018 Mar;51(3):293-303. doi: 10.1002/uog.17557.
6
Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry.
Phys Med Biol. 2017 Feb 7;62(3):734-757. doi: 10.1088/1361-6560/aa553b. Epub 2017 Jan 10.
7
Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications.
Sci Technol Adv Mater. 2009 Jul 14;10(3):034602. doi: 10.1088/1468-6996/10/3/034602. eCollection 2009 Jun.
9
Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning.
Sensors (Basel). 2015 Sep 22;15(9):24409-27. doi: 10.3390/s150924409.
10
Vinamax: a macrospin simulation tool for magnetic nanoparticles.
Med Biol Eng Comput. 2015 Apr;53(4):309-17. doi: 10.1007/s11517-014-1239-6. Epub 2015 Jan 1.

本文引用的文献

1
Preface to the Special Issue "Scientific and Clinical Applications of Magnetic Carriers".
J Magn Magn Mater. 2021 May 1;525:167667. doi: 10.1016/j.jmmm.2020.167667. Epub 2020 Dec 14.
2
Detection of bacteria in suspension by using a superconducting quantum interference device.
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):129-34. doi: 10.1073/pnas.0307128101. Epub 2003 Dec 19.
3
Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins.
Science. 2003 Sep 26;301(5641):1884-6. doi: 10.1126/science.1088755.
4
Magnetometer method for recording gastric motility.
Science. 1957 May 17;125(3255):990-1. doi: 10.1126/science.125.3255.990-b.
5
NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography.
J Magn Reson Imaging. 2000 May;11(5):488-94. doi: 10.1002/(sici)1522-2586(200005)11:5<488::aid-jmri4>3.0.co;2-v.
8
Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography.
Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):32-44. doi: 10.1016/s0168-5597(97)00091-9.
9
Magnetic-susceptibility measurement of human iron stores.
N Engl J Med. 1982 Dec 30;307(27):1671-5. doi: 10.1056/NEJM198212303072703.
10
Ferromagnetic contamination in the lungs and other organs of the human body.
Science. 1973 May 18;180(4087):745-8. doi: 10.1126/science.180.4087.745.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验