Livesay Dennis R, La David
Department of Chemistry, California State Polytechnic University, Pomona, 3801 W. Temple Avenue, Pomona, CA 91768, USA.
Protein Sci. 2005 May;14(5):1158-70. doi: 10.1110/ps.041221105.
Conservation of function is the basic tenet of protein evolution. Conservation of key electrostatic properties is a frequently employed mechanism that leads to conserved function. In a previous report, we identified several conserved electrostatic properties in four protein families and one functionally diverse enzyme superfamily. In this report, we demonstrate the evolutionary and catalytic importance of electrostatic networks in three ubiquitous metabolic enzymes: triosephosphate isomerase, enolase, and transaldolase. Evolutionary importance is demonstrated using phylogenetic motifs (sequence fragments that parallel the overall familial phylogeny). Phylogenetic motifs frequently correspond to both catalytic residues and conserved interactions that fine-tune catalytic residue pKa values. Further, in the case of triosephosphate isomerase, quantitative differences in the catalytic Glu169 pKa values parallel subfamily differentiation. Finally, phylogenetic motifs are shown to structurally cluster around the active sites of eight different TIM-barrel families. Depending upon the mechanistic requisites of each reaction catalyzed, interruptions to the canonical fold may or may not be identified as phylogenetic motifs.
功能保守是蛋白质进化的基本准则。关键静电性质的保守是导致功能保守的一种常用机制。在之前的一份报告中,我们在四个蛋白质家族和一个功能多样的酶超家族中鉴定出了几种保守的静电性质。在本报告中,我们展示了静电网络在三种普遍存在的代谢酶(磷酸丙糖异构酶、烯醇化酶和转醛醇酶)中的进化和催化重要性。使用系统发育基序(与整个家族系统发育平行的序列片段)来证明进化重要性。系统发育基序通常对应于催化残基和微调催化残基pKa值的保守相互作用。此外,就磷酸丙糖异构酶而言,催化性谷氨酸169的pKa值的定量差异与亚家族分化平行。最后,系统发育基序显示在八个不同TIM桶家族的活性位点周围结构聚类。根据所催化的每个反应的机制要求,对典型折叠的干扰可能会或可能不会被识别为系统发育基序。