Cloez Bertrand, Fritsch Coralie
INRA Montpellier UMR MISTEA, 2 place Pierre Viala, 34060, Montpellier, France.
CMAP, École Polytechnique, UMR CNRS 7641, route de Saclay, 91128, Palaiseau Cedex, France.
J Math Biol. 2017 Oct;75(4):805-843. doi: 10.1007/s00285-017-1097-6. Epub 2017 Jan 27.
In a chemostat, bacteria live in a growth container of constant volume in which liquid is injected continuously. Recently, Campillo and Fritsch introduced a mass-structured individual-based model to represent this dynamics and proved its convergence to a more classic partial differential equation. In this work, we are interested in the convergence of the fluctuation process. We consider this process in some Sobolev spaces and use central limit theorems on Hilbert space to prove its convergence in law to an infinite-dimensional Gaussian process. As a consequence, we obtain a two-dimensional Gaussian approximation of the Crump-Young model for which the long time behavior is relatively misunderstood. For this approximation, we derive the invariant distribution and the convergence to it. We also present numerical simulations illustrating our results.
在恒化器中,细菌生活在一个体积恒定的生长容器中,液体持续注入该容器。最近,坎皮洛和弗里奇引入了一个基于个体质量结构的模型来描述这种动态变化,并证明了它收敛于一个更经典的偏微分方程。在这项工作中,我们关注波动过程的收敛性。我们在一些索伯列夫空间中考虑这个过程,并利用希尔伯特空间上的中心极限定理来证明它依分布收敛于一个无穷维高斯过程。因此,我们得到了对克伦普 - 杨模型的二维高斯近似,而该模型的长期行为相对不太为人所理解。对于这个近似,我们推导了不变分布及其收敛性。我们还给出了说明我们结果的数值模拟。