Léculier Alexis, Roux Pierre
Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, 75205 Paris Cedex 06, France.
Mathematical Institute, University of Oxford, OX2 6GG Oxford, UK.
Acta Appl Math. 2022;180(1):1. doi: 10.1007/s10440-022-00501-1. Epub 2022 Jun 21.
Following previous works about integro-differential equations of parabolic type modelling the Darwinian evolution of a population, we study a two-population system in the cooperative case. First, we provide a theoretical study of the limit of rare mutations and we prove that the limit is described by a constrained Hamilton-Jacobi equation. This equation is given by an eigenvalue of a matrix which accounts for the diffusion parameters and the coefficients of the system. Then, we focus on a particular application: the understanding of a phenomenon called Adaptation to DNA damage. In this framework, we provide several numerical simulations to illustrate our theoretical results and investigate mathematical and biological questions.
继之前关于模拟种群达尔文进化的抛物型积分 - 微分方程的研究工作之后,我们研究合作情形下的双种群系统。首先,我们对稀有突变的极限进行了理论研究,并证明该极限由一个约束哈密顿 - 雅可比方程描述。此方程由一个矩阵的特征值给出,该矩阵考虑了扩散参数和系统的系数。然后,我们专注于一个特定的应用:对一种称为“对DNA损伤的适应”现象的理解。在此框架下,我们提供了几个数值模拟来阐述我们的理论结果,并研究数学和生物学问题。