Suppr超能文献

非临床样本中的维度人格特质与DSM-IV人格障碍症状计数的预测

Dimensional personality traits and the prediction of DSM-IV personality disorder symptom counts in a nonclinical sample.

作者信息

Bagby R Michael, Marshall Margarita B, Georgiades Stelios

机构信息

Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.

出版信息

J Pers Disord. 2005 Feb;19(1):53-67. doi: 10.1521/pedi.19.1.53.62180.

Abstract

The third edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-III; APA, 1980) set forth a categorical system of personality psychopathology that is composed of discrete personality disorders (PDs), each with a distinct set of diagnostic criteria. Although this system is widely accepted and highly influential, alternative dimensional approaches to capturing personality psychopathology have been proposed. Three dimensional models of personality have garnered particular attention-the Five-Factor Model (FFM; Costa & McCrae, 1992), the Seven-Factor Psychobiological Model of Temperament and Character (Seven-Factor Model; Cloninger, Svrakic, & Przybeck, 1993); and the 18-factor model of personality pathology (18-factor model; Livesley, 1986). Although the personality traits from each of these models has been examined in relation to the ten personality disorders in the DSM-IV, no study has examined the comparative and incremental validity of these models in predicting PD symptoms for these ten disorders. Using self-report instruments that measure these models and the ten DSM-IV PDs, correlation and linear regression analyses indicate that traits from all three models had statistically significant associations with PD symptom counts. Hierarchical regressions revealed that the 18-factor model had incremental predictive validity over the FFM and Seven-Fac-tor Model in predicting symptom counts for all ten DSM-IV PDs. The FFM had incremental predictive validity over the Seven-Factor Model model for all ten disorders and the Seven-Factor was able to add incremental predictive validity over the 18-factor model for five of the ten PDs and for eight of the ten disorders relative to the FFM.

摘要

《精神疾病诊断与统计手册》第三版(《DSM - III》;美国心理学会,1980年)提出了一种人格精神病理学的分类系统,该系统由离散的人格障碍(PDs)组成,每种人格障碍都有一套独特的诊断标准。尽管这个系统被广泛接受且极具影响力,但也有人提出了用于描述人格精神病理学的替代维度方法。三种人格维度模型受到了特别关注——五因素模型(FFM;科斯塔和麦克雷,1992年)、气质与性格的七因素心理生物学模型(七因素模型;克隆宁格、斯弗拉基克和普日贝克,1993年);以及人格病理学的18因素模型(18因素模型;利夫斯利,1986年)。虽然已经针对《DSM - IV》中的十种人格障碍,对这些模型中的每一种所包含的人格特质进行了研究,但尚无研究考察这些模型在预测这十种障碍的人格障碍症状方面的比较效度和增量效度。使用测量这些模型以及《DSM - IV》中十种人格障碍的自评工具,相关分析和线性回归分析表明,这三种模型的特质与人格障碍症状计数均存在统计学上的显著关联。分层回归分析显示,在预测《DSM - IV》中所有十种人格障碍的症状计数方面,18因素模型比五因素模型和七因素模型具有增量预测效度。在预测所有十种障碍的症状计数方面,五因素模型比七因素模型具有增量预测效度,并且相对于五因素模型,七因素模型能够在十种人格障碍中的五种以及十种障碍中的八种上,比18因素模型增加增量预测效度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验