Suppr超能文献

预测蛋白质亚细胞定位:过去、现在与未来。

Predicting protein subcellular localization: past, present, and future.

作者信息

Dönnes Pierre, Höglund Annette

机构信息

Department for Simulation of Biological Systems, Wilhelm Schickard Institute, University of Tübingen, D-72076 Tübingen, Germany.

出版信息

Genomics Proteomics Bioinformatics. 2004 Nov;2(4):209-15. doi: 10.1016/s1672-0229(04)02027-3.

Abstract

Functional characterization of every single protein is a major challenge of the post-genomic era. The large-scale analysis of a cell's proteins, proteomics, seeks to provide these proteins with reliable annotations regarding their interaction partners and functions in the cellular machinery. An important step on this way is to determine the subcellular localization of each protein. Eukaryotic cells are divided into subcellular compartments, or organelles. Transport across the membrane into the organelles is a highly regulated and complex cellular process. Predicting the subcellular localization by computational means has been an area of vivid activity during recent years. The publicly available prediction methods differ mainly in four aspects: the underlying biological motivation, the computational method used, localization coverage, and reliability, which are of importance to the user. This review provides a short description of the main events in the protein sorting process and an overview of the most commonly used methods in this field.

摘要

对每一种蛋白质进行功能表征是后基因组时代的一项重大挑战。对细胞蛋白质进行大规模分析的蛋白质组学旨在为这些蛋白质提供有关其相互作用伙伴以及在细胞机制中功能的可靠注释。在这条道路上的一个重要步骤是确定每种蛋白质的亚细胞定位。真核细胞被分为亚细胞区室或细胞器。跨膜运输到细胞器是一个受到高度调控且复杂的细胞过程。近年来,通过计算手段预测亚细胞定位一直是一个活跃的领域。公开可用的预测方法主要在四个方面存在差异:潜在的生物学动机、所使用的计算方法、定位覆盖范围以及可靠性,而这些对用户来说都很重要。本综述简要描述了蛋白质分选过程中的主要事件,并概述了该领域最常用的方法。

相似文献

1
Predicting protein subcellular localization: past, present, and future.
Genomics Proteomics Bioinformatics. 2004 Nov;2(4):209-15. doi: 10.1016/s1672-0229(04)02027-3.
2
Support vector machine approach for protein subcellular localization prediction.
Bioinformatics. 2001 Aug;17(8):721-8. doi: 10.1093/bioinformatics/17.8.721.
3
Protein subcellular localization prediction using artificial intelligence technology.
Methods Mol Biol. 2008;484:435-63. doi: 10.1007/978-1-59745-398-1_27.
5
Protein Subcellular Localization Prediction.
Methods Mol Biol. 2021;2361:197-212. doi: 10.1007/978-1-0716-1641-3_12.
6
Human proteins characterization with subcellular localizations.
J Theor Biol. 2014 Oct 7;358:61-73. doi: 10.1016/j.jtbi.2014.05.008. Epub 2014 May 23.
7
Predicting protein subcellular location by fusing multiple classifiers.
J Cell Biochem. 2006 Oct 1;99(2):517-27. doi: 10.1002/jcb.20879.
8
Multiple-Localization and Hub Proteins.
PLoS One. 2016 Jun 10;11(6):e0156455. doi: 10.1371/journal.pone.0156455. eCollection 2016.
10
Multitask learning for protein subcellular location prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2011 May-Jun;8(3):748-59. doi: 10.1109/TCBB.2010.22.

引用本文的文献

4
Challenges in LncRNA Biology: Views and Opinions.
Noncoding RNA. 2024 Aug 1;10(4):43. doi: 10.3390/ncrna10040043.
5
6
Anticancer Potential of Pyridoxine-Based Doxorubicin Derivatives: An In Vitro Study.
Life (Basel). 2024 Feb 20;14(3):282. doi: 10.3390/life14030282.
8
Deciphering Target Protein Cascade in Biofilm using Genomic Data Mining, and Protein-protein Interaction.
Curr Genomics. 2023 Oct 27;24(2):100-109. doi: 10.2174/1389202924666230815144126.
9
In Silico Functional Characterization of a Hypothetical Protein From Reveals a Novel -Adenosylmethionine-Dependent Methyltransferase Activity.
Bioinform Biol Insights. 2023 Jul 3;17:11779322231184024. doi: 10.1177/11779322231184024. eCollection 2023.
10
A review from biological mapping to computation-based subcellular localization.
Mol Ther Nucleic Acids. 2023 Apr 20;32:507-521. doi: 10.1016/j.omtn.2023.04.015. eCollection 2023 Jun 13.

本文引用的文献

1
Mechanisms of protein import and routing in chloroplasts.
Curr Biol. 2004 Dec 29;14(24):R1064-77. doi: 10.1016/j.cub.2004.11.049.
2
Bi-directional protein transport between the ER and Golgi.
Annu Rev Cell Dev Biol. 2004;20:87-123. doi: 10.1146/annurev.cellbio.20.010403.105307.
3
Predicting subcellular localization via protein motif co-occurrence.
Genome Res. 2004 Oct;14(10A):1957-66. doi: 10.1101/gr.2650004.
4
The ins and outs of E-cadherin trafficking.
Trends Cell Biol. 2004 Aug;14(8):427-34. doi: 10.1016/j.tcb.2004.07.007.
5
ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W414-9. doi: 10.1093/nar/gkh350.
7
Ancient invasions: from endosymbionts to organelles.
Science. 2004 Apr 9;304(5668):253-7. doi: 10.1126/science.1094884.
8
MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins.
Bioinformatics. 2004 Jul 22;20(11):1785-94. doi: 10.1093/bioinformatics/bth171. Epub 2004 Mar 22.
9
Predicting subcellular localization of proteins using machine-learned classifiers.
Bioinformatics. 2004 Mar 1;20(4):547-56. doi: 10.1093/bioinformatics/btg447. Epub 2004 Jan 22.
10
Prediction of protein subcellular locations using fuzzy k-NN method.
Bioinformatics. 2004 Jan 1;20(1):21-8. doi: 10.1093/bioinformatics/btg366.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验