Suppr超能文献

酵母基因保守中的复制校正与协同进化。

Copy correction and concerted evolution in the conservation of yeast genes.

作者信息

Pyne Saumyadipta, Skiena Steven, Futcher Bruce

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, New York 11794, USA.

出版信息

Genetics. 2005 Aug;170(4):1501-13. doi: 10.1534/genetics.103.025940. Epub 2005 May 23.

Abstract

The yeast Saccharomyces cerevisiae and other members of the genus Saccharomyces are descendants of an ancient whole-genome duplication event. Although most of the duplicate genes have since been deleted, many remain, and so there are many pairs of related genes. We have found that poorly expressed genes diverge rapidly from their paralog, while highly expressed genes diverge little, if at all. This lack of divergence of highly expressed paralogous gene pairs seems to involve gene correction: one member of the pair "corrects" the sequence of its twin, and so the gene pair evolves as a unit. This correction presumably involves gene conversion and could occur via a reverse-transcribed cDNA intermediate. Such correction events may also occur in other organisms. These results support the idea that copies of poorly expressed genes are preserved when they diverge to take on new functions, while copies of highly expressed genes are preserved when they are needed to provide additional gene product for the original function.

摘要

酿酒酵母和酵母属的其他成员是古代全基因组复制事件的后代。尽管大多数重复基因后来被删除了,但仍有许多保留了下来,因此存在许多相关基因对。我们发现,低表达基因与其旁系同源基因迅速分化,而高表达基因即使有分化也很少。高表达旁系同源基因对缺乏这种分化似乎涉及基因校正:该基因对中的一个成员“校正”其孪生基因的序列,因此该基因对作为一个整体进化。这种校正大概涉及基因转换,并且可能通过逆转录的cDNA中间体发生。这种校正事件也可能发生在其他生物体中。这些结果支持了这样一种观点,即低表达基因的拷贝在分化以承担新功能时被保留,而高表达基因的拷贝在需要为原始功能提供额外基因产物时被保留。

相似文献

1
Copy correction and concerted evolution in the conservation of yeast genes.
Genetics. 2005 Aug;170(4):1501-13. doi: 10.1534/genetics.103.025940. Epub 2005 May 23.
2
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.
Nature. 2004 Apr 8;428(6983):617-24. doi: 10.1038/nature02424. Epub 2004 Mar 7.
3
Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8397-402. doi: 10.1073/pnas.0608218104. Epub 2007 May 9.
4
Yeast genome duplication was followed by asynchronous differentiation of duplicated genes.
Nature. 2003 Feb 20;421(6925):848-52. doi: 10.1038/nature01419.
5
Very low gene duplication rate in the yeast genome.
Science. 2004 Nov 19;306(5700):1367-70. doi: 10.1126/science.1102033.
6
Retention of protein complex membership by ancient duplicated gene products in budding yeast.
Trends Genet. 2007 Jun;23(6):266-9. doi: 10.1016/j.tig.2007.03.012. Epub 2007 Apr 10.
7
Estimating the time to the whole-genome duplication and the duration of concerted evolution via gene conversion in yeast.
Genetics. 2005 Sep;171(1):63-9. doi: 10.1534/genetics.105.043869. Epub 2005 Jun 21.
9
Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae.
Genetica. 2007 Mar;129(3):301-8. doi: 10.1007/s10709-006-0011-8. Epub 2006 Aug 4.
10
Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14412-6. doi: 10.1073/pnas.0606348103. Epub 2006 Sep 13.

引用本文的文献

2
Genetic robustness and functional evolution of gene duplicates.
Nucleic Acids Res. 2014 Feb;42(4):2405-14. doi: 10.1093/nar/gkt1200. Epub 2013 Nov 27.
3
Ectopic gene conversions in the genome of ten hemiascomycete yeast species.
Int J Evol Biol. 2010 Nov 25;2011:970768. doi: 10.4061/2011/970768.
4
A catalog of neutral and deleterious polymorphism in yeast.
PLoS Genet. 2008 Aug 29;4(8):e1000183. doi: 10.1371/journal.pgen.1000183.
5
Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast.
Genetics. 2008 Jul;179(3):1681-92. doi: 10.1534/genetics.107.074450. Epub 2008 Jun 18.

本文引用的文献

1
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.
Nature. 2004 Apr 8;428(6983):617-24. doi: 10.1038/nature02424. Epub 2004 Mar 7.
2
Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Science. 2003 Jul 4;301(5629):71-6. doi: 10.1126/science.1084337. Epub 2003 May 29.
3
Sequencing and comparison of yeast species to identify genes and regulatory elements.
Nature. 2003 May 15;423(6937):241-54. doi: 10.1038/nature01644.
4
Effects of GC content and mutational pressure on the lengths of exons and coding sequences.
J Mol Evol. 2003 Mar;56(3):362-70. doi: 10.1007/s00239-002-2406-1.
5
6
Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast.
Mol Cell Biol. 2000 Aug;20(15):5404-14. doi: 10.1128/MCB.20.15.5404-5414.2000.
7
Updated map of duplicated regions in the yeast genome.
Gene. 1999 Sep 30;238(1):253-61. doi: 10.1016/s0378-1119(99)00319-4.
8
A sampling of the yeast proteome.
Mol Cell Biol. 1999 Nov;19(11):7357-68. doi: 10.1128/MCB.19.11.7357.
9
Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast.
Mol Cell Biol. 1998 Nov;18(11):6525-37. doi: 10.1128/MCB.18.11.6525.
10
Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast.
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9757-62. doi: 10.1073/pnas.94.18.9757.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验