Medintz Igor L, Sapsford Kim E, Konnert John H, Chatterji Anju, Lin Tianwei, Johnson John E, Mattoussi Hedi
Center for Bio/Molecular Science and Engineering Code 6900, Laboratory for the Structure of Matter Code 6812, Washington, DC 20375, USA.
Langmuir. 2005 Jun 7;21(12):5501-10. doi: 10.1021/la0468287.
This report describes two related methods for decorating cowpea mosaic virus (CPMV) with luminescent semiconductor nanocrystals (quantum dots, QDs). Variants of CPMV are immobilized on a substrate functionalized with NeutrAvidin using modifications of biotin-avidin binding chemistry in combination with metal affinity coordination. For example, using CPMV mutants expressing available 6-histidine sequences inserted at loops on the viral coat protein, we show that these virus particles can be specifically immobilized on NeutrAvidin functionalized substrates in a controlled fashion via metal-affinity coordination. To accomplish this, a hetero-bifunctional biotin-NTA moiety, activated with nickel, is used as the linker for surface immobilization of CPMV (bridging the CPMVs' histidines to the NeutrAvidin). Two linking chemistries are then employed to achieve CPMV decoration with hydrophilic CdSe-ZnS core-shell QDs; they target the histidine or lysine residues on the exterior virus surface and utilize biotin-avidin interactions. In the first scheme, QDs are immobilized on the surface-tethered CPMV via electrostatic attachment to avidin previously bound to the virus particle. In the second strategy, the lysine residues common to each viral surface asymmetric unit are chemically functionalized with biotin groups and the biotinylated CPMV is discretely immobilized onto the substrate via NeutrAvidin-biotin interactions. The biotin units on the upper exposed surface of the immobilized CPMV then serve as capture sites for QDs conjugated with a mixture of avidin and a second protein, maltose binding protein, which is also used for QD-protein conjugate purification. Characterization of the assembled CPMV and QD structures is presented, and the potential uses for protein-coated QDs functionalized onto this symmetrical virion nanoscaffold are discussed.
本报告描述了两种用发光半导体纳米晶体(量子点,QDs)修饰豇豆花叶病毒(CPMV)的相关方法。利用生物素-抗生物素蛋白结合化学修饰结合金属亲和配位,将CPMV变体固定在经中性抗生物素蛋白功能化的基质上。例如,使用表达在病毒衣壳蛋白环上插入的可用6-组氨酸序列的CPMV突变体,我们表明这些病毒颗粒可以通过金属亲和配位以可控方式特异性固定在中性抗生物素蛋白功能化的基质上。为此,用镍活化的异双功能生物素-NTA部分用作CPMV表面固定的连接体(将CPMV的组氨酸连接到中性抗生物素蛋白)。然后采用两种连接化学方法,用亲水性CdSe-ZnS核壳量子点实现CPMV修饰;它们靶向病毒表面外部的组氨酸或赖氨酸残基,并利用生物素-抗生物素蛋白相互作用。在第一种方案中,量子点通过静电附着到先前与病毒颗粒结合的抗生物素蛋白上,固定在表面连接的CPMV上。在第二种策略中,每个病毒表面不对称单元共有的赖氨酸残基用生物素基团进行化学功能化,生物素化的CPMV通过中性抗生物素蛋白-生物素相互作用离散地固定在基质上。固定的CPMV上表面暴露的生物素单元随后用作与抗生物素蛋白和第二种蛋白质麦芽糖结合蛋白的混合物偶联的量子点的捕获位点,麦芽糖结合蛋白也用于量子点-蛋白质偶联物的纯化。文中介绍了组装的CPMV和量子点结构的表征,并讨论了功能化到这种对称病毒体纳米支架上的蛋白质包被量子点的潜在用途。