Hainzl Tobias, Huang Shenghua, Sauer-Eriksson A Elisabeth
Umeå Centre for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden. tobias.
RNA. 2005 Jul;11(7):1043-50. doi: 10.1261/rna.2080205. Epub 2005 May 31.
Proper assembly of large protein-RNA complexes requires sequential binding of the proteins to the RNA. The signal recognition particle (SRP) is a multiprotein-RNA complex responsible for the cotranslational targeting of proteins to biological membranes. Here we describe the crystal structure at 2.6-A resolution of the S-domain of SRP RNA from the archeon Methanococcus jannaschii. Comparison of this structure with the SRP19-bound form reveals the nature of the SRP19-induced conformational changes, which promote subsequent SRP54 attachment. These structural changes are initiated at the SRP19 binding site and transmitted through helix 6 to looped-out adenosines, which form tertiary RNA interaction with helix 8. Displacement of these adenosines enforces a conformational change of the asymmetric loop structure in helix 8. In free RNA, the three unpaired bases A195, C196, and C197 are directed toward the helical axis, whereas upon SRP19 binding the loop backbone inverts and the bases are splayed out in a conformation that resembles the SRP54-bound form. Nucleotides adjacent to the bulged nucleotides seem to be particularly important in the regulation of this loop transition. Binding of SRP19 to 7S RNA reveals an elegant mechanism of how protein-induced changes are directed through an RNA molecule and may relate to those regulating the assembly of other RNPs.
大型蛋白质-RNA复合物的正确组装需要蛋白质与RNA的顺序结合。信号识别颗粒(SRP)是一种多蛋白-RNA复合物,负责蛋白质共翻译靶向至生物膜。本文我们描述了来自嗜热栖热菌的SRP RNA的S结构域在2.6埃分辨率下的晶体结构。将此结构与结合SRP19的形式进行比较,揭示了SRP19诱导的构象变化的本质,这些变化促进了随后SRP54的附着。这些结构变化始于SRP19结合位点,并通过螺旋6传递至环出的腺苷,后者与螺旋8形成RNA三级相互作用。这些腺苷的移位导致螺旋8中不对称环结构的构象变化。在游离RNA中,三个未配对碱基A195、C196和C197朝向螺旋轴,而在SRP19结合后,环骨架反转,碱基以类似于结合SRP54的形式展开。突出核苷酸相邻的核苷酸在调节这种环转变中似乎特别重要。SRP19与7S RNA的结合揭示了一种精妙的机制,即蛋白质诱导的变化如何通过RNA分子传递,并且可能与调节其他核糖核蛋白组装的机制相关。