Suppr超能文献

海兔神经肌肉调节的温度补偿

Temperature compensation of neuromuscular modulation in aplysia.

作者信息

Zhurov Yuriy, Brezina Vladimir

机构信息

Department of Neuroscience, Box 1218, Mt. Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.

出版信息

J Neurophysiol. 2005 Nov;94(5):3259-77. doi: 10.1152/jn.00481.2005. Epub 2005 Jun 8.

Abstract

Physiological systems that must operate over a range of temperatures often incorporate temperature-compensatory mechanisms to maintain their output within a relatively narrow, functional range of values. We analyze here an example in the accessory radula closer (ARC) neuromuscular system, a representative part of the feeding neuromusculature of the sea slug Aplysia. The ARC muscle's two motor neurons, B15 and B16, release, in addition to ACh that contracts the muscle, modulatory peptide cotransmitters that, through a complex network of effects in the muscle, shape the ACh-induced contractions. It is believed that this modulation is critical in optimizing the performance of the muscle for successful, efficient feeding behavior. However, previous work has shown that the release of the modulatory peptides from the motor neurons decreases dramatically with increasing temperature. From 15 to 25 degrees C, for example, release decreases 20-fold. Yet Aplysia live and feed successfully not only at 15 degrees C, but at 25 degrees C and probably at higher temperatures. Here, working with reduced B15/B16-ARC preparations in vitro as well as a mathematical model of the system, we have found a resolution of this apparent paradox. Although modulator release decreases 20-fold when the temperature is raised from 15 to 25 degrees C, the observed modulation of contraction shape does not decrease at all. Two mechanisms are responsible. First, further downstream within the modulatory network, the modulatory effects themselves-experimentally dissected by exogenous modulator application-have temperature dependencies opposite to that of modulator release, increasing with temperature. Second, the saturating curvature of the dose-response relations within the network diminishes the downstream impact of the decrease of modulator release. Thus two quite distinct mechanisms, one depending on the characteristics of the individual components of the network and the other emerging from the network's structure, combine to compensate for temperature changes to maintain the output of this physiological system.

摘要

必须在一定温度范围内运行的生理系统通常会纳入温度补偿机制,以将其输出维持在相对狭窄的功能值范围内。我们在此分析腹足纲动物海兔摄食神经肌肉系统的一个代表性部分——副齿舌闭合肌(ARC)神经肌肉系统中的一个例子。ARC肌肉的两个运动神经元B15和B16,除了释放使肌肉收缩的乙酰胆碱(ACh)外,还释放调节肽共同递质,这些调节肽通过肌肉中复杂的效应网络,塑造ACh诱导的收缩。据信这种调节对于优化肌肉性能以实现成功、高效的摄食行为至关重要。然而,先前的研究表明,随着温度升高,运动神经元释放的调节肽会急剧减少。例如,从15摄氏度到25摄氏度,释放量减少了20倍。然而,海兔不仅在15摄氏度时能成功生存和摄食,在25摄氏度甚至可能在更高温度下也能如此。在这里,我们通过体外使用简化的B15/B16-ARC制剂以及该系统的数学模型,找到了这个明显矛盾的解决方案。尽管当温度从15摄氏度升高到25摄氏度时,调节剂释放减少了20倍,但观察到的收缩形状调节根本没有减少。有两种机制起作用。首先,在调节网络的更下游,调节效应本身——通过外源性调节剂应用进行实验剖析——具有与调节剂释放相反的温度依赖性,随温度升高而增加。其次,网络内剂量反应关系的饱和曲率减弱了调节剂释放减少的下游影响。因此,两种截然不同的机制,一种取决于网络单个组件的特性,另一种源于网络结构,共同作用以补偿温度变化,维持该生理系统的输出。

相似文献

1
Temperature compensation of neuromuscular modulation in aplysia.海兔神经肌肉调节的温度补偿
J Neurophysiol. 2005 Nov;94(5):3259-77. doi: 10.1152/jn.00481.2005. Epub 2005 Jun 8.
5
Neuromuscular modulation in Aplysia. I. Dynamic model.海兔的神经肌肉调节。I. 动态模型。
J Neurophysiol. 2003 Oct;90(4):2592-612. doi: 10.1152/jn.01091.2002. Epub 2003 Jul 9.

引用本文的文献

4
Circuit Robustness to Temperature Perturbation Is Altered by Neuromodulators.神经调质可改变电路对温度扰动的鲁棒性。
Neuron. 2018 Nov 7;100(3):609-623.e3. doi: 10.1016/j.neuron.2018.08.035. Epub 2018 Sep 20.

本文引用的文献

7
Neuromuscular modulation in Aplysia. I. Dynamic model.海兔的神经肌肉调节。I. 动态模型。
J Neurophysiol. 2003 Oct;90(4):2592-612. doi: 10.1152/jn.01091.2002. Epub 2003 Jul 9.
10
Mechanisms of noise-resistance in genetic oscillators.基因振荡器中的抗噪机制。
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5988-92. doi: 10.1073/pnas.092133899. Epub 2002 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验