Suppr超能文献

强化回声:一种用于短期识别记忆的迭代共振模型。

Sharpening the echo: an iterative-resonance model for short-term recognition memory.

作者信息

Mewhort D J K, Johns E E

机构信息

Department of Psychology, Queen's University, Kingston, Ontario, Canada K7L 3N6.

出版信息

Memory. 2005 Apr-May;13(3-4):300-7. doi: 10.1080/09658210344000242.

Abstract

We present an iterative-resonance model for recognition memory. On successive iterations, the probe is compared against a feature-by-feature profile of the study set. Yes decisions depend on the similarity of the probe to the profile; No decisions depend on a count of elements in the probe that are not in the profile. Successive iterations sharpen the evidence, and response latency is a function of the number of iterations needed to obtain a sufficiently clear result. The model successfully simulates classic data as well as recent data problematic for alternate models.

摘要

我们提出了一种用于再认记忆的迭代共振模型。在连续的迭代过程中,将探测刺激与学习集的逐个特征的概况进行比较。肯定判断取决于探测刺激与概况的相似性;否定判断取决于探测刺激中不在概况中的元素数量。连续的迭代会强化证据,而反应潜伏期是获得足够清晰结果所需迭代次数的函数。该模型成功地模拟了经典数据以及对其他模型来说存在问题的近期数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验