DNA变异揭示了引发疾病的分子网络。

Variations in DNA elucidate molecular networks that cause disease.

作者信息

Chen Yanqing, Zhu Jun, Lum Pek Yee, Yang Xia, Pinto Shirly, MacNeil Douglas J, Zhang Chunsheng, Lamb John, Edwards Stephen, Sieberts Solveig K, Leonardson Amy, Castellini Lawrence W, Wang Susanna, Champy Marie-France, Zhang Bin, Emilsson Valur, Doss Sudheer, Ghazalpour Anatole, Horvath Steve, Drake Thomas A, Lusis Aldons J, Schadt Eric E

机构信息

Rosetta Inpharmatics, LLC, Merck & Co., Inc., 401 Terry Avenue North, Seattle, Washington 98109, USA.

出版信息

Nature. 2008 Mar 27;452(7186):429-35. doi: 10.1038/nature06757. Epub 2008 Mar 16.

Abstract

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase beta (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.

摘要

识别增加疾病易感性的DNA变异是采用正向遗传学方法进行基因研究的主要目标之一。然而,通过此类研究鉴定疾病易感基因只能提供关于基因如何导致疾病的有限功能信息。事实上,在大多数情况下,完全缺乏功能信息,这阻碍了对一个或多个易感基因的明确鉴定。在此,我们开发了一种替代经典正向遗传学方法的方法,用于剖析复杂疾病性状。在这种方法中,我们不是直接鉴定受DNA变异直接影响的易感基因,而是鉴定受易感位点干扰进而导致疾病的基因网络。将该方法应用于从一个分离的小鼠群体中生成的肝脏和脂肪基因表达数据,结果鉴定出一个富含巨噬细胞的网络,该网络被认为与代谢综合征相关的疾病性状存在因果关系。该网络中的三个基因,即脂蛋白脂肪酶(Lpl)、β-内酰胺酶(Lactb)和类蛋白磷酸酶1(Ppm1l),被验证为先前未知的肥胖基因,从而加强了该网络与代谢疾病性状之间的关联。我们的分析提供了直接的实验支持,即肥胖等复杂性状是由复杂基因位点和环境因素调节的分子网络的涌现特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索