Freindorf Marek, Shao Yihan, Furlani Thomas R, Kong Jing
Center for Computational Research, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
J Comput Chem. 2005 Sep;26(12):1270-8. doi: 10.1002/jcc.20264.
A combined DFT quantum mechanical and AMBER molecular mechanical potential (QM/MM) is presented for use in molecular modeling and molecular simulations of large biological systems. In our approach we evaluate Lennard-Jones parameters describing the interaction between the quantum mechanical (QM) part of a system, which is described at the B3LYP/6-31+G* level of theory, and the molecular mechanical (MM) part of the system, described by the AMBER force field. The Lennard-Jones parameters for this potential are obtained by calculating hydrogen bond energies and hydrogen bond geometries for a large set of bimolecular systems, in which one hydrogen bond monomer is described quantum mechanically and the other is treated molecular mechanically. We have investigated more than 100 different bimolecular systems, finding very good agreement between hydrogen bond energies and geometries obtained from the combined QM/MM calculations and results obtained at the QM level of theory, especially with respect to geometry. Therefore, based on the Lennard-Jones parameters obtained in our study, we anticipate that the B3LYP/6-31+G*/AMBER potential will be a precise tool to explore intermolecular interactions inside a protein environment.
提出了一种结合密度泛函理论(DFT)量子力学和AMBER分子力学势(QM/MM)的方法,用于大型生物系统的分子建模和分子模拟。在我们的方法中,我们评估了描述系统量子力学(QM)部分(在B3LYP/6-31+G理论水平下描述)与系统分子力学(MM)部分(由AMBER力场描述)之间相互作用的 Lennard-Jones 参数。该势的 Lennard-Jones 参数是通过计算大量双分子系统的氢键能量和氢键几何结构获得的,其中一个氢键单体用量子力学描述,另一个用分子力学处理。我们研究了100多个不同的双分子系统,发现从组合的QM/MM计算中获得的氢键能量和几何结构与在QM理论水平下获得的结果之间有非常好的一致性,特别是在几何结构方面。因此,基于我们研究中获得的 Lennard-Jones 参数,我们预计B3LYP/6-31+G/AMBER势将是探索蛋白质环境中分子间相互作用的精确工具。