Lev M, Milford A F
J Bacteriol. 1977 Apr;130(1):445-54. doi: 10.1128/jb.130.1.445-454.1977.
Washed cells of Bacteroides melaninogenicus are unable to incorporate the sphingolipid precursor 3-ketodihydrosphingosine (3KDS) or dihydrosphingosine into the complete sphingolipids ceramide phosphorylethanolamine (CPE) and ceramide phosphorylglycerol (CPG), whereas growing cultures are able to do so. This result suggested that an energy source was required by washed cells to initiate the incorporation of 3KDS. Investigation of a number of energy sources for B. melaninogenicus showed that glutamine was active in driving the incorporation of 3KDS. This system shows saturation kinetics. Besides glutamine, only asparagine and reduced nicotinamide adenine dinucleotide (NADH) are effective; glutamate and other compounds are inactive. The glutamine-driven system is sensitive to 2,4-dinitrophenol, azide, N,N'- dicyclohexylcarbodiimide, and carbonyl cyanide m-chlorophenylhydrazone. Asparagine plus NADH shows a synergistic effect in stimulating the incorporation of 3KDS into CPE and CPG in washed cells. However, glutamine plus NADH and glutamine plus asparagine show no such synergy. The cytochrome-free mutant of B. melaninogenicus, strain S, incorporates 3KDS in a manner similar to the parent strain when glutamine is used to drive the reaction; NADH or asparagine, however, are ineffective when used with strain S. Vitamin K-depleted cells of B. melaninogenicus are similar to vitamin K-grown cells, when glutamine or NADH is used to drive the 3KDS incorporation. Glutamine and NADH are also effective in stimulating the incorporation of palmitate and acetate by washed cells of B, melaninogenicus. Increased incorporation of these fatty acids into CPE, CPG, 3KDS, and other phospholipids is significantly increased by the presence of glutamine or NADH. Thus, energization of the membrane of B. melaninogenicus by glutamine or the electron transport system by NADH or asparagine is required for sphingolipid and other phospholipid synthesis. The relationship of this energization to possible transport of sphingolipid precursors is discussed.
黑色素生成拟杆菌的洗涤细胞无法将鞘脂前体3-酮二氢鞘氨醇(3KDS)或二氢鞘氨醇掺入完整的鞘脂神经酰胺磷酸乙醇胺(CPE)和神经酰胺磷酸甘油(CPG)中,而生长中的培养物则能够做到这一点。这一结果表明,洗涤细胞需要能量来源才能启动3KDS的掺入。对黑色素生成拟杆菌的多种能量来源进行研究表明,谷氨酰胺在驱动3KDS的掺入方面具有活性。该系统呈现饱和动力学。除了谷氨酰胺,只有天冬酰胺和还原型烟酰胺腺嘌呤二核苷酸(NADH)有效;谷氨酸和其他化合物无效。谷氨酰胺驱动的系统对2,4-二硝基苯酚、叠氮化物、N,N'-二环己基碳二亚胺和羰基氰化物间氯苯腙敏感。天冬酰胺加NADH在刺激洗涤细胞中3KDS掺入CPE和CPG方面显示出协同作用。然而,谷氨酰胺加NADH和谷氨酰胺加天冬酰胺则没有这种协同作用。黑色素生成拟杆菌的无细胞色素突变株S,当使用谷氨酰胺驱动反应时,其掺入3KDS的方式与亲本菌株相似;然而,当与菌株S一起使用时,NADH或天冬酰胺无效。当使用谷氨酰胺或NADH驱动3KDS掺入时,黑色素生成拟杆菌的维生素K缺乏细胞与维生素K生长的细胞相似。谷氨酰胺和NADH在刺激黑色素生成拟杆菌洗涤细胞掺入棕榈酸酯和乙酸酯方面也有效。谷氨酰胺或NADH的存在显著增加了这些脂肪酸掺入CPE、CPG、3KDS和其他磷脂中的量。因此,鞘脂和其他磷脂的合成需要谷氨酰胺使黑色素生成拟杆菌的膜产生能量,或者NADH或天冬酰胺使电子传递系统产生能量。讨论了这种能量产生与鞘脂前体可能的转运之间的关系。