Suppr超能文献

一种检测RNA H型假结的启发式方法。

A heuristic approach for detecting RNA H-type pseudoknots.

作者信息

Huang Chun-Hsiang, Lu Chin Lung, Chiu Hsien-Tai

机构信息

Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan, Republic of China.

出版信息

Bioinformatics. 2005 Sep 1;21(17):3501-8. doi: 10.1093/bioinformatics/bti568. Epub 2005 Jun 30.

Abstract

MOTIVATION

RNA H-type pseudoknots are ubiquitous pseudoknots that are found in almost all classes of RNA and thought to play very important roles in a variety of biological processes. Detection of these RNA H-type pseudoknots can improve our understanding of RNA structures and their associated functions. However, the currently existing programs for detecting such RNA H-type pseudoknots are still time consuming and sometimes even ineffective. Therefore, efficient and effective tools for detecting the RNA H-type pseudoknots are needed.

RESULTS

In this paper, we have adopted a heuristic approach to develop a novel tool, called HPknotter, for efficiently and accurately detecting H-type pseudoknots in an RNA sequence. In addition, we have demonstrated the applicability and effectiveness of HPknotter by testing on some sequences with known H-type pseudoknots. Our approach can be easily extended and applied to other classes of more general pseudoknots.

AVAILABILITY

The web server of our HPknotter is available for online analysis at http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/ CONTACT: cllu@mail.nctu.edu.tw, chiu@cc.nctu.edu.tw

摘要

动机

RNA H型假结是普遍存在的假结,几乎在所有类型的RNA中都能找到,并被认为在多种生物学过程中发挥着非常重要的作用。检测这些RNA H型假结有助于我们更好地理解RNA结构及其相关功能。然而,目前现有的用于检测此类RNA H型假结的程序仍然耗时,有时甚至无效。因此,需要高效且有效的工具来检测RNA H型假结。

结果

在本文中,我们采用了一种启发式方法来开发一种名为HPknotter的新型工具,用于高效、准确地检测RNA序列中的H型假结。此外,我们通过对一些已知H型假结的序列进行测试,证明了HPknotter的适用性和有效性。我们的方法可以很容易地扩展并应用于其他更一般类型的假结。

可用性

我们的HPknotter网络服务器可在http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/ 进行在线分析。

联系方式

cllu@mail.nctu.edu.twchiu@cc.nctu.edu.tw

相似文献

1
A heuristic approach for detecting RNA H-type pseudoknots.
Bioinformatics. 2005 Sep 1;21(17):3501-8. doi: 10.1093/bioinformatics/bti568. Epub 2005 Jun 30.
2
An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
Bioinformatics. 2004 Jan 1;20(1):58-66. doi: 10.1093/bioinformatics/btg373.
3
Heuristic RNA pseudoknot prediction including intramolecular kissing hairpins.
RNA. 2011 Jan;17(1):27-38. doi: 10.1261/rna.2394511. Epub 2010 Nov 22.
5
PseudoViewer: automatic visualization of RNA pseudoknots.
Bioinformatics. 2002;18 Suppl 1:S321-8. doi: 10.1093/bioinformatics/18.suppl_1.s321.
6
KnotSeeker: heuristic pseudoknot detection in long RNA sequences.
RNA. 2008 Apr;14(4):630-40. doi: 10.1261/rna.968808. Epub 2008 Feb 26.
7
A rule-based approach for RNA pseudoknot prediction.
Int J Data Min Bioinform. 2008;2(1):78-93. doi: 10.1504/ijdmb.2008.016757.
8
IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming.
Bioinformatics. 2011 Jul 1;27(13):i85-93. doi: 10.1093/bioinformatics/btr215.
9
DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model.
Nucleic Acids Res. 2010 Apr;38(7):e103. doi: 10.1093/nar/gkq021. Epub 2010 Jan 31.
10
RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment.
Bioinformatics. 2007 Aug 1;23(15):1883-91. doi: 10.1093/bioinformatics/btm272. Epub 2007 May 30.

引用本文的文献

1
Complete genome sequence of a novel totivirus isolated from the leaves of Myrica rubra.
Arch Virol. 2024 May 16;169(6):123. doi: 10.1007/s00705-024-06048-w.
2
Characterization of Two Novel Toti-Like Viruses Co-infecting the Atlantic Blue Crab, , in Its Northern Range of the United States.
Front Microbiol. 2022 Mar 3;13:855750. doi: 10.3389/fmicb.2022.855750. eCollection 2022.
3
5
Detection and Molecular Characterization of Novel dsRNA Viruses Related to the Family in .
Front Cell Infect Microbiol. 2019 Jul 11;9:249. doi: 10.3389/fcimb.2019.00249. eCollection 2019.
6
RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.
PLoS One. 2018 Apr 5;13(4):e0194583. doi: 10.1371/journal.pone.0194583. eCollection 2018.
7
Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs.
Front Microbiol. 2018 Jan 4;8:2582. doi: 10.3389/fmicb.2017.02582. eCollection 2017.
8
A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures.
BMC Bioinformatics. 2014 May 18;15:147. doi: 10.1186/1471-2105-15-147.
10
Shape and secondary structure prediction for ncRNAs including pseudoknots based on linear SVM.
BMC Bioinformatics. 2013;14 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2105-14-S2-S1. Epub 2013 Jan 21.

本文引用的文献

2
MuSiC: a tool for multiple sequence alignment with constraints.
Bioinformatics. 2004 Sep 22;20(14):2309-11. doi: 10.1093/bioinformatics/bth220. Epub 2004 Apr 1.
4
An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
Bioinformatics. 2004 Jan 1;20(1):58-66. doi: 10.1093/bioinformatics/btg373.
5
A partition function algorithm for nucleic acid secondary structure including pseudoknots.
J Comput Chem. 2003 Oct;24(13):1664-77. doi: 10.1002/jcc.10296.
6
Stochastic modeling of RNA pseudoknotted structures: a grammatical approach.
Bioinformatics. 2003;19 Suppl 1:i66-73. doi: 10.1093/bioinformatics/btg1007.
7
Vienna RNA secondary structure server.
Nucleic Acids Res. 2003 Jul 1;31(13):3429-31. doi: 10.1093/nar/gkg599.
8
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.
9
Terminal RNA replication elements in human parechovirus 1.
J Virol. 2002 Dec;76(24):13116-22. doi: 10.1128/jvi.76.24.13116-13122.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验