Suppr超能文献

在相同范式下采集的 fMRI 和 MEG 数据的有效连接分析。

Effective connectivity analysis of fMRI and MEG data collected under identical paradigms.

机构信息

The Mind Research Network, NE, Albuquerque, NM 87106, USA.

出版信息

Comput Biol Med. 2011 Dec;41(12):1156-65. doi: 10.1016/j.compbiomed.2011.04.011. Epub 2011 May 17.

Abstract

Estimation of effective connectivity, a measure of the influence among brain regions, can potentially reveal valuable information about organization of brain networks. Effective connectivity is usually evaluated from the functional data of a single modality. In this paper we show why that may lead to incorrect conclusions about effective connectivity. In this paper we use Bayesian networks to estimate connectivity on two different modalities. We analyze structures of estimated effective connectivity networks using aggregate statistics from the field of complex networks. Our study is conducted on functional MRI and magnetoencephalography data collected from the same subjects under identical paradigms. Results showed some similarities but also revealed some striking differences in the conclusions one would make on the fMRI data compared with the MEG data and are strongly supportive of the use of multiple modalities in order to gain a more complete picture of how the brain is organized given the limited information one modality is able to provide.

摘要

有效连接的估计,即大脑区域之间影响的度量,可能会揭示有关大脑网络组织的有价值的信息。有效连接通常是从单一模式的功能数据中评估的。在本文中,我们将展示为什么这可能导致关于有效连接的错误结论。在本文中,我们使用贝叶斯网络来估计两种不同模式的连接。我们使用来自复杂网络领域的综合统计数据来分析估计的有效连接网络的结构。我们的研究是基于在相同的范式下从相同的受试者中收集的功能磁共振成像和脑磁图数据进行的。结果显示出一些相似之处,但也揭示了在使用 fMRI 数据和 MEG 数据得出的结论之间存在一些显著差异,这强烈支持使用多种模式来获得更完整的大脑组织方式的信息,因为一种模式能够提供的信息是有限的。

相似文献

9
A multi-layer network approach to MEG connectivity analysis.一种用于脑磁图连接性分析的多层网络方法。
Neuroimage. 2016 May 15;132:425-438. doi: 10.1016/j.neuroimage.2016.02.045. Epub 2016 Feb 22.

引用本文的文献

1
The two sides of Phobos: Gray and white matter abnormalities in phobic individuals.火卫二的两面:恐惧症患者的灰质和白质异常。
Cogn Affect Behav Neurosci. 2025 Apr;25(2):550-569. doi: 10.3758/s13415-024-01258-w. Epub 2025 Jan 3.
8
Amalgamating evidence of dynamics.整合动力学证据。
Synthese. 2019 Aug;196(8):3213-3230. doi: 10.1007/s11229-017-1568-8. Epub 2017 Sep 18.

本文引用的文献

2
Network modelling methods for FMRI.功能磁共振成像的网络建模方法。
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
5
Complex network measures of brain connectivity: uses and interpretations.脑连接复杂网络度量:用途与解读。
Neuroimage. 2010 Sep;52(3):1059-69. doi: 10.1016/j.neuroimage.2009.10.003. Epub 2009 Oct 9.
6
Key role of coupling, delay, and noise in resting brain fluctuations.耦合、延迟和噪声在静息脑波动中的关键作用。
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7. doi: 10.1073/pnas.0901831106. Epub 2009 Jun 3.
7
Stochastic dynamics as a principle of brain function.随机动力学作为大脑功能的一项原理。
Prog Neurobiol. 2009 May;88(1):1-16. doi: 10.1016/j.pneurobio.2009.01.006. Epub 2009 Jan 30.
9
Mapping the structural core of human cerebral cortex.绘制人类大脑皮层的结构核心。
PLoS Biol. 2008 Jul 1;6(7):e159. doi: 10.1371/journal.pbio.0060159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验