The Mind Research Network, NE, Albuquerque, NM 87106, USA.
Comput Biol Med. 2011 Dec;41(12):1156-65. doi: 10.1016/j.compbiomed.2011.04.011. Epub 2011 May 17.
Estimation of effective connectivity, a measure of the influence among brain regions, can potentially reveal valuable information about organization of brain networks. Effective connectivity is usually evaluated from the functional data of a single modality. In this paper we show why that may lead to incorrect conclusions about effective connectivity. In this paper we use Bayesian networks to estimate connectivity on two different modalities. We analyze structures of estimated effective connectivity networks using aggregate statistics from the field of complex networks. Our study is conducted on functional MRI and magnetoencephalography data collected from the same subjects under identical paradigms. Results showed some similarities but also revealed some striking differences in the conclusions one would make on the fMRI data compared with the MEG data and are strongly supportive of the use of multiple modalities in order to gain a more complete picture of how the brain is organized given the limited information one modality is able to provide.
有效连接的估计,即大脑区域之间影响的度量,可能会揭示有关大脑网络组织的有价值的信息。有效连接通常是从单一模式的功能数据中评估的。在本文中,我们将展示为什么这可能导致关于有效连接的错误结论。在本文中,我们使用贝叶斯网络来估计两种不同模式的连接。我们使用来自复杂网络领域的综合统计数据来分析估计的有效连接网络的结构。我们的研究是基于在相同的范式下从相同的受试者中收集的功能磁共振成像和脑磁图数据进行的。结果显示出一些相似之处,但也揭示了在使用 fMRI 数据和 MEG 数据得出的结论之间存在一些显著差异,这强烈支持使用多种模式来获得更完整的大脑组织方式的信息,因为一种模式能够提供的信息是有限的。