The Mind Research Network Albuquerque, NM, USA.
Front Neuroinform. 2010 Nov 11;4:114. doi: 10.3389/fninf.2010.00114. eCollection 2010.
The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources.
脑磁图(MEG)/脑电图和功能磁共振成像(fMRI)测量的联合分析可以提高对大脑活动的动力学和空间特性的描述。本文使用模拟和记录的任务相关 MEG 和 fMRI 活动来实证证明这种改进。使用具有连续实值参数的动态贝叶斯网络,通过序列蒙特卡罗技术来获取神经活动估计。在合成数据中,我们表明 MEG 和 fMRI 的融合提高了对间接观察到的神经活动的估计,并平滑了血氧水平依赖(BOLD)反应的跟踪。在任务相关神经活动的记录中,MEG 和 fMRI 的组合产生了具有更高信噪比的结果,这证实了实验性质所产生的预期。BOLD 反应的高度非线性模型给神经活动估计带来了困难的推理问题;由于时间和空间的复杂性,计算要求也很高。我们表明,通过稳定微分方程系统和减少所需的计算资源,对数据的联合分析可以改善系统的行为。