Suppr超能文献

细菌多样性作为驱动慢性感染持续存在的一般机制。

Bacterial plurality as a general mechanism driving persistence in chronic infections.

作者信息

Ehrlich Garth D, Hu Fen Ze, Shen Kai, Stoodley Paul, Post J Christopher

机构信息

Center for Genomic Sciences, Allegheny Singer Research Institute, Drexel University College of Medicine, Pittsburgh, PA 15212, USA.

出版信息

Clin Orthop Relat Res. 2005 Aug(437):20-4. doi: 10.1097/00003086-200508000-00005.

Abstract

Classical methods for the study of bacterial pathogens have proven to be inadequate to inform with respect to chronic infections including those associated with arthroplasties. Modern methods of analysis have demonstrated that bacterial growth patterns, ecology, and intra-species heterogeneity are more complex than were envisioned by early microbiologists. Cultural methods were developed to study acute, epidemic infections, but it is now recognized that the phenotype associated with these diseases represents only a minor aspect of the bacterial life cycle, which consists of planktonic, attachment, biofilm, and dispersal phases. Over 99% of bacteria in natural populations are found in biofilms which contain multiple ecological niches and numerous phenotypes. Unfortunately, the effort to develop antibiotics has been directed solely at the planktonic minority (associated with systemic illness) which explains our inability to eradicate chronic infections. In this study we establish a new rubric, bacterial plurality, for the understanding of bacterial ecology and evolution with respect to chronic infection. The fundamental tenets of bacterial plurality are that the bacteria within an infecting population display multiple phenotypes and possess multiple genotypes. Phenotypic plurality is embodied in the biofilm paradigm and genotypic plurality is embodied in the concepts of the supra-genome and the distributed genome hypothesis. It is now clear that bacterial diversity provides bacterial populations, as a whole, the ability to persist in the face of a multi-faceted host response.

摘要

事实证明,研究细菌病原体的传统方法不足以了解慢性感染,包括与关节成形术相关的感染。现代分析方法表明,细菌的生长模式、生态以及种内异质性比早期微生物学家所设想的更为复杂。培养方法是为研究急性流行性感染而开发的,但现在人们认识到,与这些疾病相关的表型仅代表细菌生命周期的一个次要方面,细菌生命周期包括浮游、附着、生物膜和扩散阶段。在自然种群中,超过99%的细菌存在于含有多种生态位和众多表型的生物膜中。不幸的是,抗生素研发工作仅针对浮游状态的少数细菌(与全身性疾病相关),这就解释了我们无法根除慢性感染的原因。在本研究中,我们建立了一个新的类别——细菌多元性,以理解与慢性感染相关的细菌生态和进化。细菌多元性的基本原理是,感染群体中的细菌表现出多种表型并拥有多种基因型。表型多元性体现在生物膜范式中,而基因型多元性体现在超基因组和分布式基因组假说的概念中。现在很清楚,细菌多样性使细菌群体作为一个整体有能力在面对多方面的宿主反应时持续存在。

相似文献

1
Bacterial plurality as a general mechanism driving persistence in chronic infections.
Clin Orthop Relat Res. 2005 Aug(437):20-4. doi: 10.1097/00003086-200508000-00005.
3
The role of bacterial biofilms in chronic infections.
APMIS Suppl. 2013 May(136):1-51. doi: 10.1111/apm.12099.
4
Evolving concepts in biofilm infections.
Cell Microbiol. 2009 Jul;11(7):1034-43. doi: 10.1111/j.1462-5822.2009.01323.x. Epub 2009 Apr 6.
5
The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):269-79. doi: 10.1111/j.1574-695X.2010.00704.x. Epub 2010 May 28.
6
Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):324-36. doi: 10.1111/j.1574-695X.2010.00714.x. Epub 2010 Jun 7.
8
Biofilm formation in bacterial pathogens of veterinary importance.
Anim Health Res Rev. 2010 Dec;11(2):97-121. doi: 10.1017/S1466252310000149. Epub 2010 Oct 25.
9
10
Detection of Biofilm in Wounds as an Early Indicator for Risk for Tissue Infection and Wound Chronicity.
Ann Plast Surg. 2016 Jan;76(1):127-31. doi: 10.1097/SAP.0000000000000440.

引用本文的文献

1
Characterization of the family-level pan-genome and development of an episomal typing protocol.
mBio. 2025 Jun 11;16(6):e0094325. doi: 10.1128/mbio.00943-25. Epub 2025 May 7.
3
Common regulatory mutation increases single-cell survival to antibiotic exposures in .
bioRxiv. 2024 Sep 22:2024.09.20.614194. doi: 10.1101/2024.09.20.614194.
6
Combined reference-free and multi-reference based GWAS uncover cryptic variation underlying rapid adaptation in a fungal plant pathogen.
PLoS Pathog. 2023 Nov 16;19(11):e1011801. doi: 10.1371/journal.ppat.1011801. eCollection 2023 Nov.
9
Editorial: Otitis Media Genomics and the Middle Ear Microbiome.
Front Genet. 2021 Oct 12;12:763688. doi: 10.3389/fgene.2021.763688. eCollection 2021.

本文引用的文献

1
Liquid flow in biofilm systems.
Appl Environ Microbiol. 1994 Aug;60(8):2711-6. doi: 10.1128/aem.60.8.2711-2716.1994.
3
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004.
4
Bacterial biofilms: a diagnostic and therapeutic challenge.
Expert Rev Anti Infect Ther. 2003 Dec;1(4):667-83. doi: 10.1586/14787210.1.4.667.
5
Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms.
Antimicrob Agents Chemother. 2004 Jul;48(7):2659-64. doi: 10.1128/AAC.48.7.2659-2664.2004.
6
Partial analysis of the genomes of two nontypeable Haemophilus influenzae otitis media isolates.
Infect Immun. 2004 May;72(5):3002-10. doi: 10.1128/IAI.72.5.3002-3010.2004.
7
Bacterial biofilms: from the natural environment to infectious diseases.
Nat Rev Microbiol. 2004 Feb;2(2):95-108. doi: 10.1038/nrmicro821.
8
Persister cells and tolerance to antimicrobials.
FEMS Microbiol Lett. 2004 Jan 15;230(1):13-8. doi: 10.1016/S0378-1097(03)00856-5.
9
Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation.
Antimicrob Agents Chemother. 2004 Jan;48(1):48-52. doi: 10.1128/AAC.48.1.48-52.2004.
10
Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials.
J Appl Microbiol. 2003;95(6):1261-7. doi: 10.1046/j.1365-2672.2003.02079.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验