Suppr超能文献

基于瑞利分布的超声图像最大似然分割

Maximum likelihood segmentation of ultrasound images with Rayleigh distribution.

作者信息

Sarti Alessandro, Corsi Cristiana, Mazzini Elena, Lamberti Claudio

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, 1-40136, Italy

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jun;52(6):947-60. doi: 10.1109/tuffc.2005.1504017.

Abstract

This study presents a geometric model and a computational algorithm for segmentation of ultrasound images. A partial differential equation (PDE)-based flow is designed in order to achieve a maximum likelihood segmentation of the target in the scene. The flow is derived as the steepest descent of an energy functional taking into account the density probability distribution of the gray levels of the image as well as smoothness constraints. To model gray level behavior of ultrasound images, the classic Rayleigh probability distribution is considered. The steady state of the flow presents a maximum likelihood segmentation of the target. A finite difference approximation of the flow is derived, and numerical experiments are provided. Results are presented on ultrasound medical images as fetal echography and echocardiography.

摘要

本研究提出了一种用于超声图像分割的几何模型和计算算法。设计了一种基于偏微分方程(PDE)的流,以实现场景中目标的最大似然分割。该流是作为能量泛函的最速下降推导出来的,其中考虑了图像灰度级的密度概率分布以及平滑约束。为了对超声图像的灰度行为进行建模,考虑了经典的瑞利概率分布。该流的稳态呈现出目标的最大似然分割。推导了该流的有限差分近似,并提供了数值实验。结果展示在胎儿超声心动图和超声心动描记术等超声医学图像上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验