Tezcan F Akif, Kaiser Jens T, Mustafi Debarshi, Walton Mika Y, Howard James B, Rees Douglas C
Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.
Science. 2005 Aug 26;309(5739):1377-80. doi: 10.1126/science.1115653.
Adenosine triphosphate (ATP) hydrolysis in the nitrogenase complex controls the cycle of association and dissociation between the electron donor adenosine triphosphatase (ATPase) (Fe-protein) and its target catalytic protein (MoFe-protein), driving the reduction of dinitrogen into ammonia. Crystal structures in different nucleotide states have been determined that identify conformational changes in the nitrogenase complex during ATP turnover. These structures reveal distinct and mutually exclusive interaction sites on the MoFe-protein surface that are selectively populated, depending on the Fe-protein nucleotide state. A consequence of these different docking geometries is that the distance between redox cofactors, a critical determinant of the intermolecular electron transfer rate, is coupled to the nucleotide state. More generally, stabilization of distinct docking geometries by different nucleotide states, as seen for nitrogenase, could enable nucleotide hydrolysis to drive the relative motion of protein partners in molecular motors and other systems.
固氮酶复合物中的三磷酸腺苷(ATP)水解控制着电子供体三磷酸腺苷酶(ATPase)(铁蛋白)与其靶催化蛋白(钼铁蛋白)之间的结合和解离循环,推动将二氮还原为氨。已确定了处于不同核苷酸状态的晶体结构,这些结构确定了ATP周转过程中固氮酶复合物的构象变化。这些结构揭示了钼铁蛋白表面上不同且相互排斥的相互作用位点,这些位点根据铁蛋白的核苷酸状态被选择性占据。这些不同对接几何结构的一个结果是,氧化还原辅因子之间的距离(分子间电子转移速率的关键决定因素)与核苷酸状态相关联。更普遍地说,如固氮酶所示,不同核苷酸状态对不同对接几何结构的稳定作用可能使核苷酸水解驱动分子马达和其他系统中蛋白质伙伴的相对运动。