Suppr超能文献

固氮酶复合物:核苷酸开关蛋白的多个对接位点。

Nitrogenase complexes: multiple docking sites for a nucleotide switch protein.

作者信息

Tezcan F Akif, Kaiser Jens T, Mustafi Debarshi, Walton Mika Y, Howard James B, Rees Douglas C

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.

出版信息

Science. 2005 Aug 26;309(5739):1377-80. doi: 10.1126/science.1115653.

Abstract

Adenosine triphosphate (ATP) hydrolysis in the nitrogenase complex controls the cycle of association and dissociation between the electron donor adenosine triphosphatase (ATPase) (Fe-protein) and its target catalytic protein (MoFe-protein), driving the reduction of dinitrogen into ammonia. Crystal structures in different nucleotide states have been determined that identify conformational changes in the nitrogenase complex during ATP turnover. These structures reveal distinct and mutually exclusive interaction sites on the MoFe-protein surface that are selectively populated, depending on the Fe-protein nucleotide state. A consequence of these different docking geometries is that the distance between redox cofactors, a critical determinant of the intermolecular electron transfer rate, is coupled to the nucleotide state. More generally, stabilization of distinct docking geometries by different nucleotide states, as seen for nitrogenase, could enable nucleotide hydrolysis to drive the relative motion of protein partners in molecular motors and other systems.

摘要

固氮酶复合物中的三磷酸腺苷(ATP)水解控制着电子供体三磷酸腺苷酶(ATPase)(铁蛋白)与其靶催化蛋白(钼铁蛋白)之间的结合和解离循环,推动将二氮还原为氨。已确定了处于不同核苷酸状态的晶体结构,这些结构确定了ATP周转过程中固氮酶复合物的构象变化。这些结构揭示了钼铁蛋白表面上不同且相互排斥的相互作用位点,这些位点根据铁蛋白的核苷酸状态被选择性占据。这些不同对接几何结构的一个结果是,氧化还原辅因子之间的距离(分子间电子转移速率的关键决定因素)与核苷酸状态相关联。更普遍地说,如固氮酶所示,不同核苷酸状态对不同对接几何结构的稳定作用可能使核苷酸水解驱动分子马达和其他系统中蛋白质伙伴的相对运动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验