Martin Shirley A, Bassok Miriam
Conceptual and Historical Studies of Science, University of Chicago, Chicago, Illinois 60637, USA.
Mem Cognit. 2005 Apr;33(3):471-8. doi: 10.3758/bf03193064.
Mathematical solutions to textbook word problems are correlated with semantic relations between the objects described in the problem texts. In particular, division problems usually involve functionally related objects (e.g., tulips-vases) and rarely involve categorically related objects (e.g., tulips-daisies). We examined whether middle school, high school, and college students use object relations when they solve division word problems (WP) or perform the less familiar task of representing verbal statements with algebraic equations (EQ). Both tasks involved multiplicative comparison statements with either categorically or functionally related objects (e.g., "four times as many cupcakes [commuters] as brownies [automobiles]"). Object relations affected the frequency of correct solutions in the WP task but not in the EQ task. In the latter task, object relations did affect the structure of nonalgebraic equation errors. We argue that students use object relations as "semantic cues" when they engage in the sense-making activity of mathematical modeling.
教科书中文字问题的数学解决方案与问题文本中所描述对象之间的语义关系相关。具体而言,除法问题通常涉及功能相关的对象(如郁金香 - 花瓶),很少涉及类别相关的对象(如郁金香 - 雏菊)。我们研究了中学生、高中生和大学生在解决除法文字问题(WP)或执行用代数方程(EQ)表示文字陈述这一不太熟悉的任务时,是否会使用对象关系。这两项任务都涉及与类别或功能相关对象的乘法比较陈述(例如,“纸杯蛋糕[通勤者]的数量是布朗尼[汽车]的四倍”)。对象关系影响了文字问题任务中正确解决方案的频率,但在代数方程任务中没有影响。在后者任务中,对象关系确实影响了非代数方程错误的结构。我们认为,学生在进行数学建模的意义构建活动时,会将对象关系用作“语义线索”。