Suppr超能文献

半导体光电极表面电荷转移与复合的化学控制

Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces.

作者信息

Lewis Nathan S

机构信息

210 Noyes Laboratory, 127-72, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, 91125, USA.

出版信息

Inorg Chem. 2005 Oct 3;44(20):6900-11. doi: 10.1021/ic051118p.

Abstract

Semiconductor/liquid contacts provide very efficient systems for converting sunlight into electrical and/or chemical energy. Until recently, relatively little was understood about the factors that control the rates of interfacial charge transfer in such systems. This Forum Article summarizes recent results that have elucidated the key factors that control such charge-transfer rates, including verification of the Marcus inverted region, identification of the maximum charge-transfer rate constant for outer-sphere, nonadsorbing redox couples at optimal exoergicity, the role of nuclear reorganization on the value of the interfacial charge-transfer rate constant at semiconductor electrodes, and the effects of pH-induced changes in the driving force on the rates of such systems. In addition, we discuss methods for using main group inorganic chemistry to control the electrical properties of surfaces of important semiconductors for solar energy conversion, with specific emphasis on alkylation of the (111)-oriented surface of Si. Control of the rates at which carriers cross such interfaces, along with control of the rates at which carriers recombine at such interfaces, forms the basis for exerting chemical control over the key solar energy conversion properties of semiconductor photoelectrode-based devices.

摘要

半导体/液体接触为将阳光转化为电能和/或化学能提供了非常高效的系统。直到最近,人们对控制此类系统中界面电荷转移速率的因素了解相对较少。这篇论坛文章总结了最近的研究成果,这些成果阐明了控制此类电荷转移速率的关键因素,包括对马库斯反转区域的验证、确定在外球、非吸附氧化还原对处于最佳放能状态时的最大电荷转移速率常数、核重排对半导体电极界面电荷转移速率常数的影响,以及pH值引起的驱动力变化对此类系统速率的影响。此外,我们讨论了利用主族无机化学来控制用于太阳能转换的重要半导体表面电学性质的方法,特别强调了对硅(111)取向表面的烷基化。控制载流子穿过此类界面的速率,以及控制载流子在此类界面处复合的速率,构成了对基于半导体光电极的器件关键太阳能转换特性进行化学控制的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验