Suppr超能文献

通过酶促阻断的功能互补恢复层出镰刀菌中赤霉素的产生。

Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks.

作者信息

Malonek S, Rojas M C, Hedden P, Hopkins P, Tudzynski B

机构信息

Westfälische Wilhelms Universität Münster, Institut für Botanik, Schlossgarten 3, D-48149 Münster, Germany.

出版信息

Appl Environ Microbiol. 2005 Oct;71(10):6014-25. doi: 10.1128/AEM.71.10.6014-6025.2005.

Abstract

Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5' noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs.

摘要

在藤仓赤霉菌复合种内已鉴定出9个生物学种或交配群体(MPs),用字母A到I表示,以及至少29个无性型镰刀菌物种。该复合种的成员是镰刀菌属中唯一含有赤霉素(GA)生物合成基因簇或其至少部分基因的物种。然而,到目前为止,镰刀菌产生GA的能力仅限于藤仓赤霉菌,尽管至少其他6个MPs含有GA生物合成基因簇的所有基因。最密切相关的物种——轮枝镰刀菌的成员,由于编码细胞色素P450单加氧酶的基因P450 - 4和P450 - 1的编码区和5'非编码区积累了多个突变,已失去产生GA的能力,导致GA生物合成早期阶段的代谢阻断。在本研究中,我们确定了轮枝镰刀菌GA生物合成途径中最初特定步骤的其他酶促阻断:香叶基香叶基二磷酸的合成和贝壳杉烯的合成。通过将相应基因从产生GA的藤仓赤霉菌转移到轮枝镰刀菌来补充这些酶促阻断,导致GA产生得以恢复。我们讨论了藤仓赤霉菌复合种之外的镰刀菌物种没有GA生物合成基因的原因,而与镰刀菌亲缘关系较远的物种,如痂圆孢属和球腔菌属物种,却能产生GA。

相似文献

1
Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks.
Appl Environ Microbiol. 2005 Oct;71(10):6014-25. doi: 10.1128/AEM.71.10.6014-6025.2005.
3
Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola.
Appl Environ Microbiol. 2008 Sep;74(17):5325-39. doi: 10.1128/AEM.00694-08. Epub 2008 Jun 20.
6
Biosynthesis of sesqui- and diterpenes by the gibberellin producer Fusarium fujikuroi.
Chembiochem. 2011 Nov 25;12(17):2667-76. doi: 10.1002/cbic.201100516. Epub 2011 Oct 11.
7
Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex.
Phytochemistry. 2005 Jun;66(11):1296-311. doi: 10.1016/j.phytochem.2005.04.012.
8
Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster.
Fungal Genet Biol. 1998 Dec;25(3):157-70. doi: 10.1006/fgbi.1998.1095.
9
The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway.
Appl Environ Microbiol. 2001 Aug;67(8):3514-22. doi: 10.1128/AEM.67.8.3514-3522.2001.
10
Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain.
Fungal Genet Biol. 2008 Oct;45(10):1393-403. doi: 10.1016/j.fgb.2008.07.011. Epub 2008 Jul 24.

引用本文的文献

3
Identification of Rice Seed-Derived Spp. and Development of LAMP Assay against .
Pathogens. 2020 Dec 22;10(1):1. doi: 10.3390/pathogens10010001.
4
Chronic Sublethal Aluminum Exposure and Caryopsis Colonization Influence Gene Expression of F.a.1.
Front Microbiol. 2020 Feb 4;11:51. doi: 10.3389/fmicb.2020.00051. eCollection 2020.
5
A Natural Variation of Fumonisin Gene Cluster Associated with Fumonisin Production Difference in .
Toxins (Basel). 2019 Apr 3;11(4):200. doi: 10.3390/toxins11040200.
7
Indole-diterpene biosynthetic capability of epichloë endophytes as predicted by ltm gene analysis.
Appl Environ Microbiol. 2009 Apr;75(7):2200-11. doi: 10.1128/AEM.00953-08. Epub 2009 Jan 30.

本文引用的文献

2
Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex.
Phytochemistry. 2005 Jun;66(11):1296-311. doi: 10.1016/j.phytochem.2005.04.012.
4
Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology.
Appl Microbiol Biotechnol. 2005 Mar;66(6):597-611. doi: 10.1007/s00253-004-1805-1. Epub 2004 Dec 2.
5
Selection for gene clustering by tandem duplication.
Annu Rev Microbiol. 2004;58:119-42. doi: 10.1146/annurev.micro.58.030603.123806.
6
Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex.
Mycol Res. 2004 Jul;108(Pt 7):815-22. doi: 10.1017/s0953756204000577.
7
The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans.
Mol Microbiol. 2004 Sep;53(5):1307-18. doi: 10.1111/j.1365-2958.2004.04215.x.
8
Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum.
Chembiochem. 2004 Sep 6;5(9):1196-1203. doi: 10.1002/cbic.200400138.
9
LaeA, a regulator of secondary metabolism in Aspergillus spp.
Eukaryot Cell. 2004 Apr;3(2):527-35. doi: 10.1128/EC.3.2.527-535.2004.
10
The NADPH-cytochrome P450 reductase gene from Gibberella fujikuroi is essential for gibberellin biosynthesis.
J Biol Chem. 2004 Jun 11;279(24):25075-84. doi: 10.1074/jbc.M308517200. Epub 2004 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验