Nair Deepak T, Johnson Robert E, Prakash Louise, Prakash Satya, Aggarwal Aneel K
Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.
Structure. 2005 Oct;13(10):1569-77. doi: 10.1016/j.str.2005.08.010.
Human DNA polymerase iota (hPoliota), a member of the Y family of DNA polymerases, differs in remarkable ways from other DNA polymerases, incorporating correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. We present here the crystal structure of hPoliota bound to template G and incoming dCTP, which reveals a G.C + Hoogsteen base pair in a DNA polymerase active site. We show that the hPoliota active site has evolved to favor Hoogsteen base pairing, wherein the template sugar is fixed in a cavity that reduces the C1'-C1' distance across the nascent base pair from approximately 10.5 A in other DNA polymerases to 8.6 A in hPoliota. The rotation of G from anti to syn is then largely in response to this curtailed C1'-C1' distance. A G.C+ Hoogsteen base pair suggests a specific mechanism for hPoliota's ability to bypass N(2)-adducted guanines that obstruct replication.
人类DNA聚合酶ι(hPoliota)是DNA聚合酶Y家族的成员,与其他DNA聚合酶有显著不同,它在模板嘌呤相对位置掺入正确核苷酸的效率和保真度比在模板嘧啶相对位置高得多。我们在此展示了与模板G和进入的dCTP结合的hPoliota的晶体结构,该结构揭示了DNA聚合酶活性位点中的一个G·C + hoogsteen碱基对。我们表明,hPoliota活性位点已经进化到有利于Hoogsteen碱基配对,其中模板糖固定在一个腔中,该腔将新生碱基对的C1'-C1'距离从其他DNA聚合酶中的约10.5埃缩短到hPoliota中的8.6埃。然后,G从反式到顺式的旋转很大程度上是对这种缩短的C1'-C1'距离的响应。一个G·C + hoogsteen碱基对为hPoliota绕过阻碍复制的N(2)-加合鸟嘌呤的能力提出了一种特定机制。