O'Malley A James, Zou Kelly H
Department of Health Care Policy, Harvard Medical School, Boston, MA 02115, USA.
Stat Med. 2006 Feb 15;25(3):459-79. doi: 10.1002/sim.2187.
A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.
基于带有协变量的聚类连续诊断结果数据,开发了一种贝叶斯多变量分层变换模型(BMHTM)用于接受者操作特征(ROC)曲线分析。该模型的两个特殊之处在于,它纳入了结果的非线性单调变换,并且可以分析多个相关结果。均值、方差和变换分量均采用参数化建模,从而能够进行广泛的推断。通过关注两个问题来说明该通用框架:(1)分析依赖协变量的单变量测试结果的诊断准确性,这需要在每个聚类内进行Box-Cox变换,以将测试结果映射到一个共同的分布族;(2)使用多变量聚类结果数据开发最优复合诊断测试。在第二个问题中,使用判别函数分析估计复合测试,并将其与来自逻辑回归分析的测试进行比较,其中金标准是二元结果。在一项多中心临床试验的前列腺癌活检数据上展示了所提出的方法。