Suppr超能文献

周期性拉伸通过细胞骨架-核机械偶联和表观遗传修饰促进细胞重编程过程。

Cyclic Stretch Promotes Cellular Reprogramming Process through Cytoskeletal-Nuclear Mechano-Coupling and Epigenetic Modification.

机构信息

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.

Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Nov;10(32):e2303395. doi: 10.1002/advs.202303395. Epub 2023 Sep 19.

Abstract

Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.

摘要

高效推进细胞重编程技术对再生疗法、疾病建模和药物发现具有重大影响。生物物理线索可以调节细胞命运,但在重编程过程中外部物理力的确切作用仍难以捉摸。本文作者表明,对成纤维细胞进行时间性循环拉伸可显著提高诱导多能干细胞(iPSC)生成的效率。生成的 iPSC 被证明表达多能性标记物,并表现出体内功能。批量 RNA-seq 分析显示,循环拉伸增强了获得多能性所需的生物学特征,包括增加细胞分裂和间充质上皮转化。值得注意的是,循环拉伸激活了关键的机械敏感分子(整合素、核周肌动蛋白、核膜蛋白 nesprin-2 和 YAP),跨越细胞骨架到核空间。此外,拉伸介导的细胞骨架-核机械偶联导致表观遗传修饰的改变,主要是 H3K9 甲基化的下调及其全基因组 ChIP-seq 和药理学抑制试验揭示的基因整体占据变化。单细胞 RNA-seq 进一步鉴定了机械响应 iPSC 的亚群和拉伸细胞中关键的表观遗传修饰因子。总的来说,循环拉伸通过机械转导过程和表观遗传变化激活 iPSC 重编程,伴随着机械敏感基因的占据变化。这项研究强调了外部物理力与随后的机械转导过程以及细胞重编程中相关基因表达的表观遗传变化之间的紧密联系,在细胞生物学、组织工程和再生医学领域具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2557/10646259/b8344e8830d2/ADVS-10-2303395-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验