Suppr超能文献

拟南芥的rib1突变体在吲哚-3-丁酸转运、下胚轴伸长和根系结构方面存在改变。

The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.

作者信息

Poupart Julie, Rashotte Aaron M, Muday Gloria K, Waddell Candace S

机构信息

Department of Biology, McGill University, Montreal, Quebec, Canada.

出版信息

Plant Physiol. 2005 Nov;139(3):1460-71. doi: 10.1104/pp.105.067967. Epub 2005 Oct 28.

Abstract

Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, development, and response to exogenous auxin consistent with an important physiological role for IBA transport. Both hypocotyl and root IBA basipetal transport are decreased in rib1 and root acropetal IBA transport is increased. While indole-3-acetic acid (IAA) transport levels are not different in rib1 compared to wild type, root acropetal IAA transport is insensitive to the IAA efflux inhibitor naphthylphthalamic acid in rib1, as is the dependent physiological process of lateral root formation. These observed changes in IBA transport are accompanied by altered rib1 phenotypes. Previously, rib1 roots were shown to be less sensitive to growth inhibition by IBA, but to have a wild-type response to IAA in root elongation. rib1 is also less sensitive to IBA in stimulation of lateral root formation and in hypocotyl elongation under most, but not all, light and sucrose conditions. rib1 has wild-type responses to IAA, except under one set of conditions, low light and 1.5% sucrose, in which both hypocotyl elongation and lateral root formation show altered IAA response. Taken together, our results support a model in which endogenous IBA influences wild-type seedling morphology. Modifications in IBA distribution in seedlings affect hypocotyl and root elongation, as well as lateral root formation.

摘要

最近研究表明,生长素吲哚 - 3 - 丁酸(IBA)在拟南芥幼苗中存在极性运输,然而这一过程的生理重要性尚未完全明确。在此,我们首次展示了拟南芥突变体中IBA运输的改变,并表明抗IBA(rib1)突变导致生长、发育以及对外源生长素的反应发生变化,这与IBA运输的重要生理作用相一致。在rib1突变体中,下胚轴和根的IBA向基运输均减少,而根的IBA向顶运输增加。虽然与野生型相比,rib1突变体中吲哚 - 3 - 乙酸(IAA)的运输水平没有差异,但rib1突变体中根的IAA向顶运输对IAA外流抑制剂萘基邻苯二甲酸不敏感,侧根形成的相关生理过程也是如此。这些观察到的IBA运输变化伴随着rib1突变体表型的改变。此前研究表明,rib1突变体的根对IBA的生长抑制作用不太敏感,但在根伸长方面对IAA有野生型反应。在大多数但并非所有光照和蔗糖条件下,rib1突变体在侧根形成和下胚轴伸长方面对IBA的刺激也不太敏感。rib1突变体对IAA有野生型反应,但在一组条件下除外,即低光照和1.5%蔗糖条件下,下胚轴伸长和侧根形成均表现出对IAA反应的改变。综上所述,我们的结果支持一个模型,即内源性IBA影响野生型幼苗形态。幼苗中IBA分布的改变会影响下胚轴和根的伸长以及侧根的形成。

相似文献

1
The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.
Plant Physiol. 2005 Nov;139(3):1460-71. doi: 10.1104/pp.105.067967. Epub 2005 Oct 28.
2
The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis.
Plant Physiol. 2000 Dec;124(4):1739-51. doi: 10.1104/pp.124.4.1739.
3
Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis.
Plant Physiol. 2003 Oct;133(2):761-72. doi: 10.1104/pp.103.022582. Epub 2003 Oct 2.
4
Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings.
Plant Physiol. 2010 Aug;153(4):1577-86. doi: 10.1104/pp.110.157461. Epub 2010 Jun 18.
7
The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation.
Plant Biol (Stuttg). 2015 Jan;17(1):34-40. doi: 10.1111/plb.12187. Epub 2014 May 6.

引用本文的文献

1
Indole 3-Butyric Acid Metabolism and Transport in .
Front Plant Sci. 2019 Jul 3;10:851. doi: 10.3389/fpls.2019.00851. eCollection 2019.
2
Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function.
J Exp Bot. 2019 Feb 20;70(4):1255-1265. doi: 10.1093/jxb/erz005.
3
Roles for IBA-derived auxin in plant development.
J Exp Bot. 2018 Jan 4;69(2):169-177. doi: 10.1093/jxb/erx298.
4
Auxin activity: Past, present, and future.
Am J Bot. 2015 Feb;102(2):180-96. doi: 10.3732/ajb.1400285. Epub 2015 Jan 29.
5
UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.
PLoS One. 2013 Apr 16;8(4):e61705. doi: 10.1371/journal.pone.0061705. Print 2013.
6
Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid.
Mol Plant. 2011 May;4(3):477-86. doi: 10.1093/mp/ssr006. Epub 2011 Feb 28.
9
Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation.
Planta. 2010 Apr;231(5):1025-36. doi: 10.1007/s00425-010-1106-0. Epub 2010 Feb 10.
10
Measurement of auxin transport in Arabidopsis thaliana.
Nat Protoc. 2009;4(4):437-51. doi: 10.1038/nprot.2009.1.

本文引用的文献

4
Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.
Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536-40. doi: 10.1073/pnas.85.15.5536.
5
Intrinsic and environmental response pathways that regulate root system architecture.
Plant Cell Environ. 2005 Jan;28(1):67-77. doi: 10.1111/j.1365-3040.2005.01306.x.
6
A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux.
Science. 2004 Oct 29;306(5697):862-5. doi: 10.1126/science.1100618.
9
The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways.
Plant J. 2004 Apr;38(2):332-47. doi: 10.1111/j.1365-313X.2004.02052.x.
10
Plant gravitropism. Unraveling the ups and downs of a complex process.
Plant Physiol. 2003 Dec;133(4):1677-90. doi: 10.1104/pp.103.032169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验