Suppr超能文献

整体细胞摄取动力学的生化基础:特异性亲和力、寡营养能力和米氏常数的意义。

Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the michaelis constant.

机构信息

Institute of Marine Science and Biochemistry/Molecular Biology Program, University of Alaska, Fairbanks, Fairbanks, Alaska 99775.

出版信息

Appl Environ Microbiol. 1991 Jul;57(7):2033-8. doi: 10.1128/aem.57.7.2033-2038.1991.

Abstract

Formulations are presented that describe the concentration dependency of nutrient-limited transport and growth in molecular terms. They relate the rate of transport at steady state through a two-sequence process, transport and metabolism, to ambient concentrations according to the amounts and kinetic characteristics of the two rate-limiting proteins in these sequences. Sequences are separated by a metabolic pool. A novel feature of these formulations is the translation coefficient, which relates the transport rate attained at given ambient nutrient concentrations and membrane transporter characteristics to the nutrient concentrations sustained in the metabolic pools. The formulations, termed janusian kinetics, show that hyperbolic kinetics are retained during independent changes in transporter and enzyme contents or characteristics. Specific affinity (a degrees (A)) depends strongly on the amount and kinetic characteristics of the transporters; it is also mildly affected by the amount and characteristics of the rate-limiting enzyme. This kinetic constant best describes the ability to accumulate substrate from limiting concentrations. Maximal velocity (V(max)) describes uptake from concentrated solutions and can depend strongly on either limiting enzyme content or the associated content of transporters. The whole-cell Michaelis constant (K(T)), which depends on the ratio of rate-limiting enzyme to transporter, can be relatively independent of change in a degrees (A) and is best used to describe the concentration at which saturation begins to occur. Theory specifies that good oligotrophs have a large a degrees (A) for nutrient collection and a small V(max) for economy of enzyme, giving a small K(T). The product of the two constants is universally rather constant so that oligotrophy is scaled on a plot of a degrees (A) versus K(T), with better oligotrophs toward one end. This idea is borne out by experimental data, and therefore typical small difficult-to-culture aquatic bacteria may be classified as oligobacteria.

摘要

提出了一些表述方法,用分子术语描述了营养限制运输和生长的浓度依赖性。它们根据这两个序列中两种限速蛋白的数量和动力学特性,将稳态下的运输速率与环境浓度相关联。序列由代谢池隔开。这些公式的一个新特点是翻译系数,它将在给定环境营养浓度和膜转运蛋白特性下达到的运输速率与代谢池中的营养浓度联系起来。这些公式被称为扬尼斯动力学,表明在转运蛋白和酶含量或特性独立变化时,双曲线动力学得以保留。比亲和力(a 度(A))强烈依赖于转运蛋白的数量和动力学特性;它也受到限速酶的数量和特性的轻微影响。这个动力学常数最能描述从限制浓度积累底物的能力。最大速度(V(max))描述了从浓缩溶液中的吸收,并且可以强烈依赖于限速酶的含量或相关转运蛋白的含量。整个细胞米氏常数(K(T)),取决于限速酶与转运蛋白的比例,可以相对独立于 a 度(A)的变化,最适合描述饱和度开始发生的浓度。理论规定,良好的寡营养生物具有较大的 a 度(A)用于营养收集和较小的 V(max)用于节省酶,从而得到较小的 K(T)。这两个常数的乘积普遍相当恒定,因此寡营养生物在 a 度(A)与 K(T)的图上进行缩放,较好的寡营养生物在一端。这一想法得到了实验数据的证实,因此典型的难以培养的小型水生细菌可能被归类为寡细菌。

相似文献

2
Nutrient-limited microbial growth kinetics: overview and recent advances.
Antonie Van Leeuwenhoek. 1993;63(3-4):225-35. doi: 10.1007/BF00871220.
3
Nutrient uptake by microorganisms according to kinetic parameters from theory as related to cytoarchitecture.
Microbiol Mol Biol Rev. 1998 Sep;62(3):636-45. doi: 10.1128/MMBR.62.3.636-645.1998.
4
The physical base of marine bacterial ecology.
Microb Ecol. 1994 Sep;28(2):273-85. doi: 10.1007/BF00166817.
7
Functional characterization of purified zinc transporter from renal brush border membrane of rat.
Biochim Biophys Acta. 2000 Dec 20;1509(1-2):429-39. doi: 10.1016/s0005-2736(00)00325-4.
8
Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria.
PLoS Comput Biol. 2021 May 19;17(5):e1009023. doi: 10.1371/journal.pcbi.1009023. eCollection 2021 May.

引用本文的文献

1
COmmunity and Single Microbe Optimisation System (COSMOS).
NPJ Syst Biol Appl. 2025 May 21;11(1):51. doi: 10.1038/s41540-025-00534-w.
5
Reconciling concepts of black queen and tragedy of the commons in simulated bulk soil and rhizosphere prokaryote communities.
Front Microbiol. 2022 Sep 15;13:969784. doi: 10.3389/fmicb.2022.969784. eCollection 2022.
7
Oligotrophy vs. copiotrophy in an alkaline and saline habitat of Lonar Lake.
Front Microbiol. 2022 Aug 4;13:939984. doi: 10.3389/fmicb.2022.939984. eCollection 2022.
8
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes.
mBio. 2022 Aug 30;13(4):e0057122. doi: 10.1128/mbio.00571-22. Epub 2022 Jul 26.
9
Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments.
Open Biol. 2022 Jul;12(7):220041. doi: 10.1098/rsob.220041. Epub 2022 Jul 13.
10
A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH.
Front Microbiol. 2022 Mar 21;13:803241. doi: 10.3389/fmicb.2022.803241. eCollection 2022.

本文引用的文献

2
Growth of bacteria in inorganic medium at different levels of airborne organic substances.
Appl Environ Microbiol. 1983 Dec;46(6):1258-62. doi: 10.1128/aem.46.6.1258-1262.1983.
3
Kinetics of nutrient-limited transport and microbial growth.
Microbiol Rev. 1985 Sep;49(3):270-97. doi: 10.1128/mr.49.3.270-297.1985.
4
Some reflections on microbial competitiveness among heterotrophic bacteria.
Antonie Van Leeuwenhoek. 1985;51(5-6):473-94. doi: 10.1007/BF00404494.
5
Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water.
Appl Environ Microbiol. 1988 Nov;54(11):2842-51. doi: 10.1128/aem.54.11.2842-2851.1988.
6
How do enzymes work?
Science. 1988 Oct 28;242(4878):533-40. doi: 10.1126/science.3051385.
7
The collisional limit: an important consideration for membrane-associated enzymes and receptors.
FASEB J. 1988 Oct;2(13):2858-66. doi: 10.1096/fasebj.2.13.2844615.
9
Testing transport models and transport data by means of kinetic rejection criteria.
Biochem J. 1989 Jun 15;260(3):885-91. doi: 10.1042/bj2600885.
10
Partition analysis and the concept of net rate constants as tools in enzyme kinetics.
Biochemistry. 1975 Jul 15;14(14):3220-4. doi: 10.1021/bi00685a029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验