Gfeller David, Chappelier Jean-Cédric, De Los Rios Paolo
Laboratoire de Biophysique Statistique, SB/ITP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056135. doi: 10.1103/PhysRevE.72.056135. Epub 2005 Nov 29.
The problem of finding clusters in complex networks has been studied by mathematicians, computer scientists, and, more recently, by physicists. Many of the existing algorithms partition a network into clear clusters without overlap. Here we introduce a method to identify the nodes lying "between clusters," allowing for a general measure of the stability of the clusters. This is done by adding noise over the edge weights. Our method can in principle be used with almost any clustering algorithm able to deal with weighted networks. We present several applications on real-world networks using two different clustering algorithms.
数学家、计算机科学家,以及最近的物理学家都对在复杂网络中寻找聚类的问题进行了研究。许多现有算法将网络划分为互不重叠的清晰聚类。在此,我们引入一种方法来识别位于“聚类之间”的节点,从而对聚类的稳定性进行通用度量。这是通过在边权重上添加噪声来实现的。我们的方法原则上几乎可以与任何能够处理加权网络的聚类算法一起使用。我们使用两种不同的聚类算法展示了在真实网络上的几个应用。