Suppr超能文献

用于人体软组织的多图像射线照相术。

Multiple-image radiography for human soft tissue.

作者信息

Muehleman Carol, Li Jun, Zhong Zhong, Brankov Jovan G, Wernick Miles N

机构信息

Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA.

出版信息

J Anat. 2006 Jan;208(1):115-24. doi: 10.1111/j.1469-7580.2006.00502.x.

Abstract

Conventional radiography only provides a measure of the X-ray attenuation caused by an object; thus, it is insensitive to other inherent informative effects, such as refraction. Furthermore, conventional radiographs are degraded by X-ray scatter that can obscure important details of the object being imaged. The novel X-ray technology diffraction-enhanced imaging (DEI) has recently allowed the visualization of nearly scatter-free images displaying both attenuation and refraction properties. A new method termed multiple-image radiography (MIR) is a significant improvement over DEI, corrects errors in DEI, is more robust to noise and produces an additional image that is entirely new to medical imaging. This new image, which portrays ultra-small-angle X-ray scattering (USAXS) conveys the presence of microstructure in the object, thus differentiating homogeneous tissues from tissues that are irregular on a scale of micrometres. The aim of this study was to examine the use of MIR for evaluation of soft tissue, and in particular to conduct a preliminary investigation of the USAXS image, which has not previously been used in tissue imaging.

摘要

传统放射成像仅能测量物体引起的X射线衰减;因此,它对其他固有的信息效应(如折射)不敏感。此外,传统的X光片会因X射线散射而质量下降,这可能会掩盖被成像物体的重要细节。新型X射线技术——衍射增强成像(DEI)最近能够实现几乎无散射图像的可视化,这些图像同时显示了衰减和折射特性。一种称为多图像放射成像(MIR)的新方法是对DEI的重大改进,它纠正了DEI中的误差,对噪声更具鲁棒性,并生成了一幅医学成像领域全新的额外图像。这幅描绘超小角X射线散射(USAXS)的新图像传达了物体中微观结构的存在,从而区分了均匀组织和微米级不规则组织。本研究的目的是研究MIR在软组织评估中的应用,特别是对USAXS图像进行初步研究,此前该图像尚未用于组织成像。

相似文献

1
Multiple-image radiography for human soft tissue.
J Anat. 2006 Jan;208(1):115-24. doi: 10.1111/j.1469-7580.2006.00502.x.
2
Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging.
J Am Podiatr Med Assoc. 2004 May-Jun;94(3):315-22. doi: 10.7547/0940315.
3
Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube.
Acad Radiol. 2009 Aug;16(8):918-23. doi: 10.1016/j.acra.2009.04.006.
4
Multiple-image radiography.
Phys Med Biol. 2003 Dec 7;48(23):3875-95. doi: 10.1088/0031-9155/48/23/006.
5
Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging.
J Anat. 2003 May;202(5):463-70. doi: 10.1046/j.1469-7580.2003.00175.x.
6
In-laboratory diffraction-enhanced X-ray imaging for articular cartilage.
Clin Anat. 2010 Jul;23(5):530-8. doi: 10.1002/ca.20993.
7
A physical model of multiple-image radiography.
Phys Med Biol. 2006 Jan 21;51(2):221-36. doi: 10.1088/0031-9155/51/2/003. Epub 2005 Dec 21.
8
An extended diffraction-enhanced imaging method for implementing multiple-image radiography.
Phys Med Biol. 2007 Apr 7;52(7):1923-45. doi: 10.1088/0031-9155/52/7/011. Epub 2007 Mar 16.
9
Emphysema early diagnosis using X-ray diffraction enhanced imaging at synchrotron light source.
Biomed Eng Online. 2014 Jun 21;13:82. doi: 10.1186/1475-925X-13-82.
10
Reliability of diffraction enhanced imaging for assessment of cartilage lesions, ex vivo.
Osteoarthritis Cartilage. 2005 Mar;13(3):187-97. doi: 10.1016/j.joca.2004.11.003.

引用本文的文献

1
Radiographic Measurements of the Foot and Ankle After Ankle Arthrodesis.
Foot Ankle Orthop. 2023 Jul 24;8(3):24730114231187888. doi: 10.1177/24730114231187888. eCollection 2023 Jul.
2
Clinical utility of postprocessed low-dose radiographs in skeletal imaging.
Br J Radiol. 2022 Feb 1;95(1130):20210881. doi: 10.1259/bjr.20210881. Epub 2022 Jan 5.
4
X-ray Dark-Field Imaging (XDFI)-a Promising Tool for 3D Virtual Histopathology.
Mol Imaging Biol. 2021 Aug;23(4):481-494. doi: 10.1007/s11307-020-01577-7. Epub 2021 Feb 23.
5
Analyzer-based phase-contrast imaging system using a micro focus X-ray source.
Rev Sci Instrum. 2014 Aug;85(8):085114. doi: 10.1063/1.4890281.
7
Talbot phase-contrast x-ray imaging for the small joints of the hand.
Phys Med Biol. 2011 Sep 7;56(17):5697-720. doi: 10.1088/0031-9155/56/17/015. Epub 2011 Aug 12.
8
Potential for imaging engineered tissues with X-ray phase contrast.
Tissue Eng Part B Rev. 2011 Oct;17(5):321-30. doi: 10.1089/ten.TEB.2011.0230. Epub 2011 Aug 2.
10
Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube.
Acad Radiol. 2009 Aug;16(8):918-23. doi: 10.1016/j.acra.2009.04.006.

本文引用的文献

1
Medical applications of diffraction enhanced imaging.
Breast Dis. 1998 Aug;10(3-4):197-207. doi: 10.3233/bd-1998-103-419.
2
X-ray detection of structural orientation in human articular cartilage.
Osteoarthritis Cartilage. 2004 Feb;12(2):97-105. doi: 10.1016/j.joca.2003.10.001.
3
Multiple-image radiography.
Phys Med Biol. 2003 Dec 7;48(23):3875-95. doi: 10.1088/0031-9155/48/23/006.
4
Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging.
J Anat. 2003 May;202(5):463-70. doi: 10.1046/j.1469-7580.2003.00175.x.
5
Radiography of rabbit articular cartilage with diffraction-enhanced imaging.
Anat Rec A Discov Mol Cell Evol Biol. 2003 May;272(1):392-7. doi: 10.1002/ar.a.10043.
6
Diffraction-enhanced X-ray imaging of articular cartilage.
Osteoarthritis Cartilage. 2002 Mar;10(3):163-71. doi: 10.1053/joca.2001.0496.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验