Monfared Ashkan, Blevins Nikolas H, Cheung Eunice L M, Jung Juergen C, Popelka Gerald, Schnitzer Mark J
Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA.
Otol Neurotol. 2006 Feb;27(2):144-52. doi: 10.1097/01.mao.0000190708.44067.b0.
We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy.
Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea.
We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy.
We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 microm/s.
Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.
我们试图开发利用荧光显微内镜在活体哺乳动物体内可视化耳蜗血流的技术。
内耳微循环似乎与耳蜗功能密切相关。血流速度测量表明,高强度声音可改变耳蜗血流。耳蜗血流中断可能是听力障碍(包括突发性感音神经性听力损失)的一个重要原因。然而,无法以非破坏性方式对耳蜗血流进行成像限制了对内耳微循环在听力功能中作用的研究。目前使用活体光镜成像耳蜗微循环的技术对耳蜗结构有广泛干扰,无法应用于人类患者。此前少数关于耳蜗的内镜研究存在光学分辨率不足,无法可视化耳蜗微血管的问题。荧光显微内镜是一种新兴的微创成像方式,可在光学显微镜无法到达的组织中提供微米级分辨率。在本文中,我们描述了在活体豚鼠中使用荧光显微内镜对耳蜗基底转内的毛细血管血流和单个红细胞运动进行成像。
我们麻醉了8只成年豚鼠,通过乳突小房进入内耳。静脉注射荧光素染料后,我们进行了有限的耳蜗造孔,并将直径1毫米的复合双合梯度折射率内镜探头引入内耳。然后我们使用单光子荧光显微内镜以落射荧光配置对单个血管内的耳蜗血流进行成像。
我们观察到单个红细胞穿过包括圆窗膜、螺旋韧带、骨螺旋板和基底膜在内的几个耳蜗结构中的单个毛细血管。内耳毛细血管内的血流速度差异很大,观察到的速度高达约500微米/秒。
荧光显微内镜能够以微米级光学分辨率可视化耳蜗微循环,并通过视频序列分析确定血流速度。