Suppr超能文献

鼠疫耶尔森菌晚期酰基转移酶基因的表征及其在温度依赖性脂多糖A变异中的作用

Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation.

作者信息

Rebeil Roberto, Ernst Robert K, Jarrett Clayton O, Adams Kristin N, Miller Samuel I, Hinnebusch B Joseph

机构信息

Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, Montana 59840, USA.

出版信息

J Bacteriol. 2006 Feb;188(4):1381-8. doi: 10.1128/JB.188.4.1381-1388.2006.

Abstract

Yersinia pestis is an important human pathogen that is maintained in flea-rodent enzootic cycles in many parts of the world. During its life cycle, Y. pestis senses host-specific environmental cues such as temperature and regulates gene expression appropriately to adapt to the insect or mammalian host. For example, Y. pestis synthesizes different forms of lipid A when grown at temperatures corresponding to the in vivo environments of the mammalian host and the flea vector. At 37 degrees C, tetra-acylated lipid A is the major form; but at 26 degrees C or below, hexa-acylated lipid A predominates. In this study, we show that the Y. pestis msbB (lpxM) and lpxP homologs encode the acyltransferases that add C12 and C(16:1) groups, respectively, to lipid IV(A) to generate the hexa-acylated form, and that their expression is upregulated at 21 degrees C in vitro and in the flea midgut. A Y. pestis deltamsbB deltalpxP double mutant that did not produce hexa-acylated lipid A was more sensitive to cecropin A, but not to polymyxin B. This mutant was able to infect and block fleas as well as the parental wild-type strain, indicating that the low-temperature-dependent change to hexa-acylated lipid A synthesis is not required for survival in the flea gut.

摘要

鼠疫耶尔森菌是一种重要的人类病原体,在世界许多地区的跳蚤-啮齿动物自然疫源循环中得以维持。在其生命周期中,鼠疫耶尔森菌感知宿主特异性环境线索,如温度,并相应地调节基因表达以适应昆虫或哺乳动物宿主。例如,当在与哺乳动物宿主和跳蚤载体的体内环境相对应的温度下生长时,鼠疫耶尔森菌会合成不同形式的脂多糖A。在37摄氏度时,四酰化脂多糖A是主要形式;但在26摄氏度或更低温度下,六酰化脂多糖A占主导。在本研究中,我们表明鼠疫耶尔森菌的msbB(lpxM)和lpxP同源物分别编码将C12和C(16:1)基团添加到脂质IV(A)以生成六酰化形式的酰基转移酶,并且它们的表达在体外21摄氏度和跳蚤中肠中上调。不产生六酰化脂多糖A的鼠疫耶尔森菌deltamsbB deltalpxP双突变体对天蚕素A更敏感,但对多粘菌素B不敏感。该突变体能够像亲本野生型菌株一样感染并阻断跳蚤,这表明在跳蚤肠道中生存不需要依赖低温的六酰化脂多糖A合成变化。

相似文献

2
Role of lipid A acylation in Yersinia enterocolitica virulence.
Infect Immun. 2010 Jun;78(6):2768-81. doi: 10.1128/IAI.01417-09. Epub 2010 Apr 12.
3
LPS modification promotes maintenance of Yersinia pestis in fleas.
Microbiology (Reading). 2015 Mar;161(Pt 3):628-38. doi: 10.1099/mic.0.000018. Epub 2014 Dec 22.
8
Effect of deletion of the lpxM gene on virulence and vaccine potential of Yersinia pestis in mice.
J Med Microbiol. 2007 Apr;56(Pt 4):443-453. doi: 10.1099/jmm.0.46880-0.
9
Effects of low-temperature flea maintenance on the transmission of Yersinia pestis by Oropsylla montana.
Vector Borne Zoonotic Dis. 2013 Jul;13(7):468-78. doi: 10.1089/vbz.2012.1017. Epub 2013 Apr 16.

引用本文的文献

1
Towards a Yersinia pestis lipid A recreated in an Escherichia coli scaffold genome.
Access Microbiol. 2024 Jul 17;6(7). doi: 10.1099/acmi.0.000723.v3. eCollection 2024.
2
Pathogenicity and virulence of .
Virulence. 2024 Dec;15(1):2316439. doi: 10.1080/21505594.2024.2316439. Epub 2024 Feb 22.
3
Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11.
Infect Immun. 2022 Aug 18;90(8):e0020122. doi: 10.1128/iai.00201-22. Epub 2022 Jul 14.
5
Remodeling to generate a highly immunogenic outer membrane vesicle vaccine against pneumonic plague.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2109667119. doi: 10.1073/pnas.2109667119. Epub 2022 Mar 11.
7
Lipopolysaccharide of the Complex.
Biomolecules. 2021 Sep 26;11(10):1410. doi: 10.3390/biom11101410.
8
Lipopolysaccharide Remodeling Confers Resistance to a Cecropin.
ACS Infect Dis. 2021 Aug 13;7(8):2536-2545. doi: 10.1021/acsinfecdis.1c00275. Epub 2021 Jul 28.
10
Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic .
mBio. 2021 Jun 29;12(3):e0063321. doi: 10.1128/mBio.00633-21. Epub 2021 Jun 1.

本文引用的文献

2
Temporal global changes in gene expression during temperature transition in Yersinia pestis.
J Bacteriol. 2004 Sep;186(18):6298-305. doi: 10.1128/JB.186.18.6298-6305.2004.
3
Transmission of Yersinia pestis from an infectious biofilm in the flea vector.
J Infect Dis. 2004 Aug 15;190(4):783-92. doi: 10.1086/422695. Epub 2004 Jul 12.
4
A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin.
EMBO J. 2004 Aug 4;23(15):2931-41. doi: 10.1038/sj.emboj.7600320. Epub 2004 Jul 22.
5
Variation in lipid A structure in the pathogenic yersiniae.
Mol Microbiol. 2004 Jun;52(5):1363-73. doi: 10.1111/j.1365-2958.2004.04059.x.
6
Molecular basis of bacterial outer membrane permeability revisited.
Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656. doi: 10.1128/MMBR.67.4.593-656.2003.
8
Lipopolysaccharides of Yersinia. An overview.
Adv Exp Med Biol. 2003;529:219-28. doi: 10.1007/0-306-48416-1_43.
10
Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector.
Science. 2002 Apr 26;296(5568):733-5. doi: 10.1126/science.1069972.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验