Suppr超能文献

通过一种新的依赖脱羧作用的能量守恒机制和 Na 作为偶联离子来维持生命。

Life by a new decarboxylation-dependent energy conservation mechanism with Na as coupling ion.

机构信息

Institut für Physiologische Chemie der TU München, Biedersteiner Strasse 29, D-8000 München 40, FRG.

出版信息

EMBO J. 1984 Aug;3(8):1665-70. doi: 10.1002/j.1460-2075.1984.tb02030.x.

Abstract

We report here a new mode of ATP synthesis in living cells. The anaerobic bacterium Propionigenium modestum gains its total energy for growth from the conversion of succinate to propionate according to: succinate + H(2)O --> propionate + HCO(3) ( big up tri, openG' = -20.6 kJ/mol). The small free energy change of this reaction does not allow a substrate-linked phosphorylation mechanism, and no electron transport phosphorylation takes place. Succinate was degraded by cell-free extracts to propionate and CO(2) via succinyl-CoA, methyl-malonyl-CoA and propionyl-CoA. This pathway involves a membrane-bound methylmalonyl-CoA decarboxylase which couples the exergonic decarboxylation with a Na ion transport across the membrane. The organism also contained a membrane-bound ATPase which was specifically activated by Na ions and catalyzed and transport of Na ions into inverted bacterial vesicles upon ATP hydrolysis. The transport was abolished by monensin but not by the uncoupler carbonylcyanide-p-trifluoromethoxy phenylhydrazone. Isolated membrane vesicles catalyzed the synthesis of ATP from ADP and inorganic phosphate when malonyl-CoA was decarboxylated and malonyl-CoA synthesis from acetyl-CoA when ATP was hydrolyzed. These syntheses were sensitive to monensin which indicates that Na functions as the coupling ion. We conclude from these results that ATP synthesis in P. modestum is driven by a Na ion gradient which is generated upon decarboxylation of methylmalonyl-CoA.

摘要

我们在此报告一种新的活细胞 ATP 合成方式。厌气细菌丙酸短杆菌根据以下反应将琥珀酸转化为丙酸来获得其生长所需的全部能量:琥珀酸 + H₂O → 丙酸 + HCO₃⁻(大大地支持三羧酸循环,标准自由能变化 ΔG' = -20.6 kJ/mol)。该反应的小自由能变化不允许底物连接的磷酸化机制,也没有电子传递磷酸化发生。琥珀酸通过细胞提取物降解为琥珀酰辅酶 A、甲基丙二酰辅酶 A 和丙酰辅酶 A,然后进一步转化为丙酸和 CO₂。该途径涉及一种膜结合的甲基丙二酰辅酶 A 脱羧酶,它将放能脱羧与 Na 离子通过膜的运输偶联。该生物体还含有一种膜结合的 ATP 酶,它被 Na 离子特异性激活,并在 ATP 水解时催化和运输 Na 离子进入倒置的细菌囊泡。该运输被莫能菌素废除,但不被解偶联剂羰基氰化物对三氟甲氧基苯腙废除。分离的膜囊泡在丙酰辅酶 A 合成时从 ADP 和无机磷酸盐合成 ATP,当 ATP 水解时从乙酰辅酶 A 合成丙二酰辅酶 A。这些合成对莫能菌素敏感,这表明 Na 作为偶联离子起作用。我们从这些结果得出结论,ATP 在 P. modestum 中的合成是由甲基丙二酰辅酶 A 脱羧产生的 Na 离子梯度驱动的。

相似文献

2
Bacterial sodium ion-coupled energetics.细菌钠离子偶联能量学。
Antonie Van Leeuwenhoek. 1994;65(4):381-95. doi: 10.1007/BF00872221.
8
Bacterial energy transductions coupled to sodium ions.与钠离子偶联的细菌能量转换
Res Microbiol. 1990 Mar-Apr;141(3):332-6. doi: 10.1016/0923-2508(90)90007-d.
9
Mechanisms of sodium transport in bacteria.细菌中钠转运的机制。
Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):465-77. doi: 10.1098/rstb.1990.0025.

引用本文的文献

3
Energy Conservation in Fermentations of Anaerobic Bacteria.厌氧细菌发酵中的能量守恒
Front Microbiol. 2021 Sep 13;12:703525. doi: 10.3389/fmicb.2021.703525. eCollection 2021.
5
Metabolic energy conservation for fermentative product formation.代谢能量守恒与发酵产物形成。
Microb Biotechnol. 2021 May;14(3):829-858. doi: 10.1111/1751-7915.13746. Epub 2021 Jan 13.
10
The past and present of sodium energetics: may the sodium-motive force be with you.钠能量学的过去与现在:愿钠动力与你同在。
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):985-92. doi: 10.1016/j.bbabio.2008.04.028. Epub 2008 Apr 27.

本文引用的文献

9
Decarboxylation and transport.脱羧作用与转运
Biosci Rep. 1982 Nov;2(11):849-60. doi: 10.1007/BF01114890.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验