Zuev Sergey M, Kingsmore Stephen F, Gessler Damian D G
DFA Capital Ltd/AG, Norbertstr, 29, D-50670, Cologne, Germany.
Theor Biol Med Model. 2006 Feb 15;3:8. doi: 10.1186/1742-4682-3-8.
Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions.
We present an initial mathematical model of sepsis, based on metabolic rate theory that links basic vascular and immunological dynamics. The model includes the rate of vascular circulation, a surrogate for the metabolic rate that is mechanistically associated with disease progression. We use the mass-specific rate of blood circulation (SRBC), a correlate of the body mass index, to build a differential equation model of circulation, infection, organ damage, and recovery. This introduces a vascular component into an infectious disease model that describes the interaction between a pathogen and the adaptive immune system.
The model predicts that deviations from normal SRBC correlate with disease progression and adverse outcome. We compare the predictions with population mortality data from cardiovascular disease and cancer and show that deviations from normal SRBC correlate with higher mortality rates.
脓毒症(血流感染)是非手术重症监护病房死亡的主要原因。美国每年有75万患者被诊断为脓毒症,且死亡率很高。目前对脓毒症的认识主要是观察性和相关性的,对该综合征潜在的生理动力学只有部分和不完整的理解。需要基于基本生理原理建立脓毒症进展的动力学模型,最终指导每小时的治疗决策。
我们提出了一个脓毒症的初始数学模型,该模型基于将基本血管和免疫动力学联系起来的代谢率理论。该模型包括血管循环速率,这是一种与疾病进展有机械关联的代谢率替代指标。我们使用特定质量的血液循环速率(SRBC),它与体重指数相关,来建立一个关于循环、感染、器官损伤和恢复的微分方程模型。这将一个血管成分引入到一个描述病原体与适应性免疫系统之间相互作用的传染病模型中。
该模型预测,与正常SRBC的偏差与疾病进展和不良结局相关。我们将这些预测与心血管疾病和癌症的人群死亡率数据进行比较,结果表明与正常SRBC的偏差与更高的死亡率相关。