Leow Alex D, Klunder Andrea D, Jack Clifford R, Toga Arthur W, Dale Anders M, Bernstein Matt A, Britson Paula J, Gunter Jeffrey L, Ward Chadwick P, Whitwell Jennifer L, Borowski Bret J, Fleisher Adam S, Fox Nick C, Harvey Danielle, Kornak John, Schuff Norbert, Studholme Colin, Alexander Gene E, Weiner Michael W, Thompson Paul M
Laboratory of Neuro Imaging, Brain Mapping Division, Department of Neurology and Semel Institute of Neuroscience, UCLA School of Medicine, 635 Charles E. Young Drive South, Suite 225E, Los Angeles, CA 90095-7332, USA.
Neuroimage. 2006 Jun;31(2):627-40. doi: 10.1016/j.neuroimage.2005.12.013. Epub 2006 Feb 15.
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.
脑变化的测量可通过连续的磁共振成像(MRI)扫描来计算,这能提供有关疾病进展的有价值信息,例如用于患者监测和药物试验。基于张量的形态测量法(TBM)可创建这些脑变化的图谱,直观显示组织生长或萎缩的三维轮廓及速率,但其敏感性取决于图像的对比度和几何稳定性。作为阿尔茨海默病神经成像计划(ADNI)的一部分,17名正常老年受试者接受了两次扫描(间隔2周),采用了几种三维1.5T MRI脉冲序列:高翻转角和低翻转角的扰相梯度回波/快速小角度激发序列(SPGR/FLASH,从中生成合成T1图像)、磁化准备快速梯度回波序列(MP-RAGE)、反转恢复扰相梯度回波序列(IR-SPGR,10例)和MEDIC序列扫描(7例)。对于每个受试者和扫描类型,使用非线性、逆一致弹性配准算法计算一个三维变形图,以对齐基线扫描和随访扫描。在国际脑图谱联盟(ICBM)立体定向空间中进行体素统计,直观显示平均绝对变化的轮廓及其受试者间方差;然后使用置换检验对这些图谱进行比较。图像稳定性取决于:(1)脉冲序列;(2)发射/接收线圈类型(鸟笼式与相控阵);(3)空间畸变校正(使用MEDIC序列信息);(4)B1场强度不均匀性校正(使用N3)。使用鸟笼式线圈采集的SPGR/FLASH图像总体偏差最小。N3校正减少了线圈类型和脉冲序列差异,提高了扫描的可重复性,但合成T1图像除外(其本身已针对B1不均匀性进行了校正)。没有有力证据支持B0校正。尽管在此处SPGR/FLASH图像显示出最小偏差,但ADNI项目的脉冲序列选择是基于多项额外的图像分析,相关结果将在其他地方报告。