Suppr超能文献

ADNI 生物统计学核心的贡献。

Contributions of the ADNI Biostatistics Core.

机构信息

Department of Public Health Sciences, University of California, Davis, California, USA.

Department of Neurology, University of Southern California, Los Angeles, California, USA.

出版信息

Alzheimers Dement. 2024 Oct;20(10):7331-7339. doi: 10.1002/alz.14159. Epub 2024 Aug 14.

Abstract

The goal of the Biostatistics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI) has been to ensure that sound study designs and statistical methods are used to meet the overall goals of ADNI. We have supported the creation of a well-validated and well-curated longitudinal database of clinical and biomarker information on ADNI participants and helped to make this accessible and usable for researchers. We have developed a statistical methodology for characterizing the trajectories of clinical and biomarker change for ADNI participants across the spectrum from cognitively normal to dementia, including multivariate patterns and evidence for heterogeneity in cognitive aging. We have applied these methods and adapted them to improve clinical trial design. ADNI-4 will offer us a chance to help extend these efforts to a more diverse cohort with an even richer panel of biomarker data to support better knowledge of and treatment for Alzheimer's disease and related dementias. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) Biostatistics Core provides study design and analytic support to ADNI investigators. Core members develop and apply novel statistical methodology to work with ADNI data and support clinical trial design. The Core contributes to the standardization, validation, and harmonization of biomarker data. The Core serves as a resource to the wider research community to address questions related to the data and study as a whole.

摘要

阿尔茨海默病神经影像学倡议(ADNI)的生物统计学核心的目标是确保使用合理的研究设计和统计方法来实现 ADNI 的总体目标。我们支持创建一个经过良好验证和精心管理的 ADNI 参与者的临床和生物标志物信息的纵向数据库,并帮助研究人员能够访问和使用该数据库。我们已经开发了一种统计方法,用于描述 ADNI 参与者从认知正常到痴呆的临床和生物标志物变化轨迹,包括多变量模式和认知老化异质性的证据。我们已经应用了这些方法并对其进行了改编,以改进临床试验设计。ADNI-4 将为我们提供一个机会,帮助将这些努力扩展到一个更具多样性的队列,其中包含更丰富的生物标志物数据面板,以支持更好地了解和治疗阿尔茨海默病和相关痴呆症。 亮点:阿尔茨海默病神经影像学倡议(ADNI)生物统计学核心为 ADNI 研究人员提供研究设计和分析支持。核心成员开发并应用新的统计方法来处理 ADNI 数据并支持临床试验设计。核心为生物标志物数据的标准化、验证和协调做出贡献。核心作为资源服务于更广泛的研究社区,以解决与数据和整个研究相关的问题。

相似文献

1
Contributions of the ADNI Biostatistics Core.
Alzheimers Dement. 2024 Oct;20(10):7331-7339. doi: 10.1002/alz.14159. Epub 2024 Aug 14.
3
4
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
5
Overview of Alzheimer's Disease Neuroimaging Initiative and future clinical trials.
Alzheimers Dement. 2025 Jan;21(1):e14321. doi: 10.1002/alz.14321. Epub 2024 Dec 22.
9
The ADNI PET Core at 20.
Alzheimers Dement. 2024 Oct;20(10):7340-7349. doi: 10.1002/alz.14165. Epub 2024 Aug 6.

本文引用的文献

1
The ADNI4 Digital Study: A novel approach to recruitment, screening, and assessment of participants for AD clinical research.
Alzheimers Dement. 2024 Oct;20(10):7232-7247. doi: 10.1002/alz.14234. Epub 2024 Sep 1.
2
Standardized statistical framework for comparison of biomarkers: Techniques from ADNI.
Alzheimers Dement. 2024 Oct;20(10):6834-6843. doi: 10.1002/alz.14160. Epub 2024 Aug 13.
3
Individuals with Alzheimer's disease and low tau burden: Characteristics and implications.
Alzheimers Dement. 2024 Mar;20(3):2113-2127. doi: 10.1002/alz.13609. Epub 2024 Jan 19.
4
Profiling baseline performance on the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) cohort near the midpoint of data collection.
Alzheimers Dement. 2023 Nov;19 Suppl 9(Suppl 9):S8-S18. doi: 10.1002/alz.13160. Epub 2023 May 31.
5
Natural cubic splines for the analysis of Alzheimer's clinical trials.
Pharm Stat. 2023 May-Jun;22(3):508-519. doi: 10.1002/pst.2285. Epub 2023 Jan 10.
7
Prediction of Cognitive Decline for Enrichment of Alzheimer's Disease Clinical Trials.
J Prev Alzheimers Dis. 2022;9(3):400-409. doi: 10.14283/jpad.2022.49.
10
Predictive value of ATN biomarker profiles in estimating disease progression in Alzheimer's disease dementia.
Alzheimers Dement. 2021 Nov;17(11):1855-1867. doi: 10.1002/alz.12491. Epub 2021 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验