Suppr超能文献

glmS核酶的特性表明二价金属离子仅起结构作用。

Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions.

作者信息

Roth Adam, Nahvi Ali, Lee Mark, Jona Inbal, Breaker Ronald R

机构信息

Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, Yale University, P. O. Box 208103, New Haven, Connecticut 06520-8103, USA.

出版信息

RNA. 2006 Apr;12(4):607-19. doi: 10.1261/rna.2266506. Epub 2006 Feb 16.

Abstract

The glmS ribozyme is a riboswitch class that occurs in certain Gram-positive bacteria, where it resides within mRNAs encoding glucosamine 6-phosphate synthase. Members of this self-cleaving ribozyme class rapidly catalyze RNA transesterification upon binding GlcN6P, and genetic evidence suggests that this cleavage event is important for down-regulating GlmS protein expression. In this report, we present a refined secondary structure model of the glmS ribozyme and determine the importance of a conserved pseudoknot structure for optimal ribozyme function. Analyses of deletion constructs demonstrate that the pseudoknot, together with other structural elements, permits the ribozyme to achieve maximum rate constants for RNA cleavage at physiologically relevant Mg2+ concentrations. In addition, we show that substantial rate enhancements are supported by an exchange-inert cobalt (III) complex and by molar concentrations of monovalent ions. Our findings indicate that the glmS ribozyme forms a complex structure to employ catalytic strategies that do not require the direct participation of divalent metal ions.

摘要

glmS核酶是一种核糖开关类别,存在于某些革兰氏阳性细菌中,位于编码6-磷酸葡糖胺合酶的mRNA内。这种自我切割核酶类别的成员在结合GlcN6P后会迅速催化RNA转酯反应,并且遗传学证据表明这种切割事件对于下调GlmS蛋白表达很重要。在本报告中,我们展示了glmS核酶的优化二级结构模型,并确定了保守假结结构对于核酶最佳功能的重要性。缺失构建体的分析表明,假结与其他结构元件一起,使核酶在生理相关的Mg2+浓度下能够实现RNA切割的最大速率常数。此外,我们表明,交换惰性钴(III)配合物和单价离子的摩尔浓度可支持显著的速率增强。我们的研究结果表明,glmS核酶形成复杂结构以采用不需要二价金属离子直接参与的催化策略。

相似文献

1
Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions.
RNA. 2006 Apr;12(4):607-19. doi: 10.1261/rna.2266506. Epub 2006 Feb 16.
2
Trans-acting glmS catalytic riboswitch: locked and loaded.
RNA. 2007 Apr;13(4):468-77. doi: 10.1261/rna.341807. Epub 2007 Feb 5.
3
Ligand requirements for glmS ribozyme self-cleavage.
Chem Biol. 2005 Nov;12(11):1221-6. doi: 10.1016/j.chembiol.2005.09.006.
4
Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme.
Nat Struct Mol Biol. 2006 Jun;13(6):517-23. doi: 10.1038/nsmb1094. Epub 2006 May 14.
5
A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme.
Biochemistry. 2009 Jun 23;48(24):5669-78. doi: 10.1021/bi900183r.
6
Control of gene expression by a natural metabolite-responsive ribozyme.
Nature. 2004 Mar 18;428(6980):281-6. doi: 10.1038/nature02362.
8
Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure.
Nucleic Acids Res. 2006 Feb 7;34(3):968-75. doi: 10.1093/nar/gkj497. Print 2006.
10
Evidence for preorganization of the glmS ribozyme ligand binding pocket.
Biochemistry. 2006 Jun 27;45(25):7861-71. doi: 10.1021/bi060337z.

引用本文的文献

1
DesiRNA: structure-based design of RNA sequences with a replica exchange Monte Carlo approach.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkae1306.
2
Gas-sensing riboceptors.
RNA Biol. 2024 Jan;21(1):1-6. doi: 10.1080/15476286.2024.2379607. Epub 2024 Jul 17.
3
Characterization of the glmS Ribozymes from Listeria Monocytogenes and Clostridium Difficile.
Chemistry. 2023 Jan 12;29(3):e202202376. doi: 10.1002/chem.202202376. Epub 2022 Nov 22.
4
Thoughts on how to think (and talk) about RNA structure.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2112677119. doi: 10.1073/pnas.2112677119. Epub 2022 Apr 19.
5
Natural circularly permuted group II introns in bacteria produce RNA circles.
iScience. 2021 Nov 13;24(12):103431. doi: 10.1016/j.isci.2021.103431. eCollection 2021 Dec 17.
6
Self-cleaving ribozymes: substrate specificity and synthetic biology applications.
RSC Chem Biol. 2021 Jul 2;2(5):1370-1383. doi: 10.1039/d0cb00207k. eCollection 2021 Oct 7.
7
Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS ribozyme.
Nat Commun. 2020 Apr 3;11(1):1663. doi: 10.1038/s41467-020-15540-1.
8
Self-cleavage of the ribozyme core is controlled by a fragile folding element.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11976-11981. doi: 10.1073/pnas.1812122115. Epub 2018 Nov 5.
9
Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics.
BMC Genomics. 2017 Oct 13;18(1):785. doi: 10.1186/s12864-017-4171-y.
10
Ionic Strength Sensing in Living Cells.
ACS Chem Biol. 2017 Oct 20;12(10):2510-2514. doi: 10.1021/acschembio.7b00348. Epub 2017 Sep 6.

本文引用的文献

1
General acid catalysis by the hepatitis delta virus ribozyme.
Nat Chem Biol. 2005 Jun;1(1):45-52. doi: 10.1038/nchembio703. Epub 2005 May 3.
3
Ligand requirements for glmS ribozyme self-cleavage.
Chem Biol. 2005 Nov;12(11):1221-6. doi: 10.1016/j.chembiol.2005.09.006.
5
The catalytic diversity of RNAs.
Nat Rev Mol Cell Biol. 2005 May;6(5):399-412. doi: 10.1038/nrm1647.
6
Role of an active site adenine in hairpin ribozyme catalysis.
J Mol Biol. 2005 Jun 24;349(5):989-1010. doi: 10.1016/j.jmb.2005.04.005. Epub 2005 Apr 20.
7
Metal ions and RNA folding: a highly charged topic with a dynamic future.
Curr Opin Chem Biol. 2005 Apr;9(2):104-9. doi: 10.1016/j.cbpa.2005.02.004.
8
Metabolic monitoring by bacterial mRNAs.
Arch Microbiol. 2005 Mar;183(3):151-9. doi: 10.1007/s00203-005-0758-9. Epub 2005 Mar 5.
9
Riboswitches exert genetic control through metabolite-induced conformational change.
Curr Opin Struct Biol. 2004 Jun;14(3):344-9. doi: 10.1016/j.sbi.2004.04.007.
10
Gene regulation by riboswitches.
Nat Rev Mol Cell Biol. 2004 Jun;5(6):451-63. doi: 10.1038/nrm1403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验