Suppr超能文献

glmS核酶的特性表明二价金属离子仅起结构作用。

Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions.

作者信息

Roth Adam, Nahvi Ali, Lee Mark, Jona Inbal, Breaker Ronald R

机构信息

Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, Yale University, P. O. Box 208103, New Haven, Connecticut 06520-8103, USA.

出版信息

RNA. 2006 Apr;12(4):607-19. doi: 10.1261/rna.2266506. Epub 2006 Feb 16.

Abstract

The glmS ribozyme is a riboswitch class that occurs in certain Gram-positive bacteria, where it resides within mRNAs encoding glucosamine 6-phosphate synthase. Members of this self-cleaving ribozyme class rapidly catalyze RNA transesterification upon binding GlcN6P, and genetic evidence suggests that this cleavage event is important for down-regulating GlmS protein expression. In this report, we present a refined secondary structure model of the glmS ribozyme and determine the importance of a conserved pseudoknot structure for optimal ribozyme function. Analyses of deletion constructs demonstrate that the pseudoknot, together with other structural elements, permits the ribozyme to achieve maximum rate constants for RNA cleavage at physiologically relevant Mg2+ concentrations. In addition, we show that substantial rate enhancements are supported by an exchange-inert cobalt (III) complex and by molar concentrations of monovalent ions. Our findings indicate that the glmS ribozyme forms a complex structure to employ catalytic strategies that do not require the direct participation of divalent metal ions.

摘要

glmS核酶是一种核糖开关类别,存在于某些革兰氏阳性细菌中,位于编码6-磷酸葡糖胺合酶的mRNA内。这种自我切割核酶类别的成员在结合GlcN6P后会迅速催化RNA转酯反应,并且遗传学证据表明这种切割事件对于下调GlmS蛋白表达很重要。在本报告中,我们展示了glmS核酶的优化二级结构模型,并确定了保守假结结构对于核酶最佳功能的重要性。缺失构建体的分析表明,假结与其他结构元件一起,使核酶在生理相关的Mg2+浓度下能够实现RNA切割的最大速率常数。此外,我们表明,交换惰性钴(III)配合物和单价离子的摩尔浓度可支持显著的速率增强。我们的研究结果表明,glmS核酶形成复杂结构以采用不需要二价金属离子直接参与的催化策略。

相似文献

3
Ligand requirements for glmS ribozyme self-cleavage.glmS核酶自我切割的配体要求。
Chem Biol. 2005 Nov;12(11):1221-6. doi: 10.1016/j.chembiol.2005.09.006.

引用本文的文献

2
Gas-sensing riboceptors.气体传感核糖受体
RNA Biol. 2024 Jan;21(1):1-6. doi: 10.1080/15476286.2024.2379607. Epub 2024 Jul 17.
4
Thoughts on how to think (and talk) about RNA structure.关于如何思考(和谈论)RNA 结构的一些想法。
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2112677119. doi: 10.1073/pnas.2112677119. Epub 2022 Apr 19.
5
Natural circularly permuted group II introns in bacteria produce RNA circles.细菌中的天然环状排列II组内含子可产生RNA环。
iScience. 2021 Nov 13;24(12):103431. doi: 10.1016/j.isci.2021.103431. eCollection 2021 Dec 17.
8
Self-cleavage of the ribozyme core is controlled by a fragile folding element.核酶核心的自我切割受脆弱折叠元件的控制。
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11976-11981. doi: 10.1073/pnas.1812122115. Epub 2018 Nov 5.
10
Ionic Strength Sensing in Living Cells.活细胞中的离子强度传感
ACS Chem Biol. 2017 Oct 20;12(10):2510-2514. doi: 10.1021/acschembio.7b00348. Epub 2017 Sep 6.

本文引用的文献

1
General acid catalysis by the hepatitis delta virus ribozyme.丁型肝炎病毒核酶的一般酸催化作用。
Nat Chem Biol. 2005 Jun;1(1):45-52. doi: 10.1038/nchembio703. Epub 2005 May 3.
3
Ligand requirements for glmS ribozyme self-cleavage.glmS核酶自我切割的配体要求。
Chem Biol. 2005 Nov;12(11):1221-6. doi: 10.1016/j.chembiol.2005.09.006.
5
The catalytic diversity of RNAs.RNA的催化多样性。
Nat Rev Mol Cell Biol. 2005 May;6(5):399-412. doi: 10.1038/nrm1647.
6
Role of an active site adenine in hairpin ribozyme catalysis.活性位点腺嘌呤在发夹状核酶催化中的作用。
J Mol Biol. 2005 Jun 24;349(5):989-1010. doi: 10.1016/j.jmb.2005.04.005. Epub 2005 Apr 20.
8
Metabolic monitoring by bacterial mRNAs.通过细菌信使核糖核酸进行代谢监测。
Arch Microbiol. 2005 Mar;183(3):151-9. doi: 10.1007/s00203-005-0758-9. Epub 2005 Mar 5.
10
Gene regulation by riboswitches.核糖开关对基因的调控
Nat Rev Mol Cell Biol. 2004 Jun;5(6):451-63. doi: 10.1038/nrm1403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验