Roth Adam, Nahvi Ali, Lee Mark, Jona Inbal, Breaker Ronald R
Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, Yale University, P. O. Box 208103, New Haven, Connecticut 06520-8103, USA.
RNA. 2006 Apr;12(4):607-19. doi: 10.1261/rna.2266506. Epub 2006 Feb 16.
The glmS ribozyme is a riboswitch class that occurs in certain Gram-positive bacteria, where it resides within mRNAs encoding glucosamine 6-phosphate synthase. Members of this self-cleaving ribozyme class rapidly catalyze RNA transesterification upon binding GlcN6P, and genetic evidence suggests that this cleavage event is important for down-regulating GlmS protein expression. In this report, we present a refined secondary structure model of the glmS ribozyme and determine the importance of a conserved pseudoknot structure for optimal ribozyme function. Analyses of deletion constructs demonstrate that the pseudoknot, together with other structural elements, permits the ribozyme to achieve maximum rate constants for RNA cleavage at physiologically relevant Mg2+ concentrations. In addition, we show that substantial rate enhancements are supported by an exchange-inert cobalt (III) complex and by molar concentrations of monovalent ions. Our findings indicate that the glmS ribozyme forms a complex structure to employ catalytic strategies that do not require the direct participation of divalent metal ions.
glmS核酶是一种核糖开关类别,存在于某些革兰氏阳性细菌中,位于编码6-磷酸葡糖胺合酶的mRNA内。这种自我切割核酶类别的成员在结合GlcN6P后会迅速催化RNA转酯反应,并且遗传学证据表明这种切割事件对于下调GlmS蛋白表达很重要。在本报告中,我们展示了glmS核酶的优化二级结构模型,并确定了保守假结结构对于核酶最佳功能的重要性。缺失构建体的分析表明,假结与其他结构元件一起,使核酶在生理相关的Mg2+浓度下能够实现RNA切割的最大速率常数。此外,我们表明,交换惰性钴(III)配合物和单价离子的摩尔浓度可支持显著的速率增强。我们的研究结果表明,glmS核酶形成复杂结构以采用不需要二价金属离子直接参与的催化策略。