Suppr超能文献

核酶核心的自我切割受脆弱折叠元件的控制。

Self-cleavage of the ribozyme core is controlled by a fragile folding element.

机构信息

Biophysics Program, Stanford University, Stanford, CA 94305.

Department of Applied Physics, Stanford University, Stanford, CA 94305;

出版信息

Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11976-11981. doi: 10.1073/pnas.1812122115. Epub 2018 Nov 5.

Abstract

Riboswitches modulate gene expression in response to small-molecule ligands. Switching is generally thought to occur via the stabilization of a specific RNA structure conferred by binding the cognate ligand. However, it is unclear whether any such stabilization occurs for riboswitches whose ligands also play functional roles, such as the ribozyme riboswitch, which undergoes self-cleavage using its regulatory ligand, glucosamine 6-phosphate, as a catalytic cofactor. To address this question, it is necessary to determine both the conformational ensemble and its ligand dependence. We used optical tweezers to measure folding dynamics and cleavage rates for the core ribozyme over a range of forces and ligand conditions. We found that the folding of a specific structural element, the P2.2 duplex, controls active-site formation and catalysis. However, the folded state is only weakly stable, regardless of cofactor concentration, supplying a clear exception to the ligand-based stabilization model of riboswitch function.

摘要

Riboswitches 通过响应小分子配体来调节基因表达。通常认为,配体的结合会稳定特定的 RNA 结构,从而实现切换。然而,对于那些配体也具有功能作用的 riboswitches,例如核酶 riboswitch,其使用调节配体葡萄糖胺 6-磷酸作为催化辅因子进行自我切割,其是否发生这种稳定化尚不清楚。为了解决这个问题,有必要确定构象整体及其配体依赖性。我们使用光学镊子在一系列力和配体条件下测量核心核酶的折叠动力学和切割速率。我们发现,特定结构元素 P2.2 双链的折叠控制着活性位点的形成和催化。然而,无论辅因子浓度如何,折叠状态都非常不稳定,这为 riboswitch 功能的基于配体的稳定模型提供了一个明显的例外。

相似文献

1
Self-cleavage of the ribozyme core is controlled by a fragile folding element.核酶核心的自我切割受脆弱折叠元件的控制。
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11976-11981. doi: 10.1073/pnas.1812122115. Epub 2018 Nov 5.
9
Fluoro-Carba-Sugars are Glycomimetic Activators of the glmS Ribozyme.氟代碳糖是glmS核酶的糖模拟激活剂。
Chemistry. 2017 Sep 12;23(51):12604-12612. doi: 10.1002/chem.201702371. Epub 2017 Aug 10.

引用本文的文献

7
Site-Selective RNA Functionalization via DNA-Induced Structure.通过 DNA 诱导结构实现位点选择性 RNA 功能化。
J Am Chem Soc. 2020 Sep 23;142(38):16357-16363. doi: 10.1021/jacs.0c06824. Epub 2020 Sep 14.

本文引用的文献

1
Metals induce transient folding and activation of the twister ribozyme.金属诱导扭曲核酶的瞬时折叠和激活。
Nat Chem Biol. 2017 Oct;13(10):1109-1114. doi: 10.1038/nchembio.2459. Epub 2017 Aug 21.
2
Riboswitch diversity and distribution.核糖开关的多样性与分布
RNA. 2017 Jul;23(7):995-1011. doi: 10.1261/rna.061234.117. Epub 2017 Apr 10.
3
Activation of the glmS Ribozyme Confers Bacterial Growth Inhibition.glmS核酶的激活导致细菌生长抑制。
Chembiochem. 2017 Mar 2;18(5):435-440. doi: 10.1002/cbic.201600491. Epub 2017 Jan 30.
8
Single-molecule studies of riboswitch folding.核糖开关折叠的单分子研究。
Biochim Biophys Acta. 2014 Oct;1839(10):1030-1045. doi: 10.1016/j.bbagrm.2014.04.005. Epub 2014 Apr 13.
9
A decade of riboswitches.十年的核糖开关。
Cell. 2013 Jan 17;152(1-2):17-24. doi: 10.1016/j.cell.2012.12.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验