Suppr超能文献

预测职业健康护理中常见精神障碍患者的病假时长。

Predicting the duration of sickness absence for patients with common mental disorders in occupational health care.

作者信息

Nieuwenhuijsen Karen, Verbeek Jos H A M, de Boer Angela G E M, Blonk Roland W B, van Dijk Frank J H

机构信息

Coronel Institute of Occupational Health, Academic Medical Centre, AmCOGG, University of Amsterdam, The Netherlands.

出版信息

Scand J Work Environ Health. 2006 Feb;32(1):67-74. doi: 10.5271/sjweh.978.

Abstract

OBJECTIVES

This study attempted to determine the factors that best predict the duration of absence from work among employees with common mental disorders.

METHODS

A cohort of 188 employees, of whom 102 were teachers, on sick leave with common mental disorders was followed for 1 year. Only information potentially available to the occupational physician during a first consultation was included in the predictive model. The predictive power of the variables was tested using Cox's regression analysis with a stepwise backward selection procedure. The hazard ratios (HR) from the final model were used to deduce a simple prediction rule. The resulting prognostic scores were then used to predict the probability of not returning to work after 3, 6, and 12 months. Calculating the area under the curve from the ROC (receiver operating characteristic) curve tested the discriminative ability of the prediction rule.

RESULTS

The final Cox's regression model produced the following four predictors of a longer time until return to work: age older than 50 years [HR 0.5, 95% confidence interval (95% CI) 0.3-0.8], expectation of duration absence longer than 3 months (HR 0.5, 95% CI 0.3-0.8), higher educational level (HR 0.5, 95% CI 0.3-0.8), and diagnosis depression or anxiety disorder (HR 0.7, 95% CI 0.4-0.9). The resulting prognostic score yielded areas under the curves ranging from 0.68 to 0.73, which represent acceptable discrimination of the rule.

CONCLUSIONS

A prediction rule based on four simple variables can be used by occupational physicians to identify unfavorable cases and to predict the duration of sickness absence.

摘要

目的

本研究试图确定能最佳预测患有常见精神障碍的员工缺勤时长的因素。

方法

对188名因常见精神障碍休病假的员工进行了为期1年的随访,其中102名是教师。预测模型仅纳入职业医生在首次会诊时可能获取的信息。使用Cox回归分析和逐步向后选择程序来检验变量的预测能力。最终模型的风险比(HR)用于推导一个简单的预测规则。然后用所得的预后评分来预测3个月、6个月和12个月后未复工的概率。通过计算ROC(受试者工作特征)曲线下的面积来检验预测规则的判别能力。

结果

最终的Cox回归模型得出了以下四个预测复工时间较长的因素:年龄大于50岁[HR 0.5,95%置信区间(95%CI)0.3 - 0.8]、预期缺勤时长超过3个月(HR 0.5,95%CI 0.3 - 0.8)、教育水平较高(HR 0.5,95%CI 0.3 - 0.8)以及诊断为抑郁症或焦虑症(HR 0.7,9�%CI 0.4 - 0.9)。所得的预后评分得出的曲线下面积在0.68至0.73之间,这表明该规则具有可接受的判别能力。

结论

职业医生可使用基于四个简单变量的预测规则来识别不良病例并预测病假时长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验