Suppr超能文献

通过吡咯喹啉醌依赖性葡萄糖脱氢酶和恩特纳-杜德洛夫途径对大肠杆菌中氧化葡萄糖代谢的营养补充。

Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway.

作者信息

Adamowicz M, Conway T, Nickerson K W

机构信息

School of Biological Sciences, University of Nebraska, Lincoln 68588.

出版信息

Appl Environ Microbiol. 1991 Jul;57(7):2012-5. doi: 10.1128/aem.57.7.2012-2015.1991.

Abstract

Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Enter-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. We suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.

摘要

两个葡萄糖阴性大肠杆菌突变体(ZSC113和DF214)在以葡萄糖作为唯一碳源时无法生长,除非添加吡咯喹啉醌(PQQ)。PQQ是周质酶葡萄糖脱氢酶的辅因子,该酶将葡萄糖转化为葡萄糖酸盐。在有氧条件下,大肠杆菌ZSC113在葡萄糖加PQQ的培养基上生长,代时为65分钟,与野生型大肠杆菌在限定的葡萄糖盐培养基中的代时大致相同。因此,对于大肠杆菌ZSC113来说,Entner-Doudoroff途径完全能够替代Embden-Meyerhof-Parnas途径。在5%十二烷基硫酸钠存在的情况下,PQQ不再作为生长因子起作用。十二烷基硫酸钠抑制了由葡萄糖形成葡萄糖酸盐,但不抑制葡萄糖酸盐的代谢。适应PQQ依赖型生长表现出较长的延迟期,低磷酸盐条件除外,在低磷酸盐条件下PhoE孔蛋白会表达。我们认为,大肠杆菌保留了葡萄糖脱氢酶的脱辅基酶和Entner-Doudoroff途径,作为对有氧、低磷酸盐和低洗涤剂水生环境的适应。

相似文献

3
Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ).
Microbiology (Reading). 1997 Oct;143 ( Pt 10):3149-3156. doi: 10.1099/00221287-143-10-3149.
6
Mutants of Escherichia coli producing pyrroloquinoline quinone.
J Gen Microbiol. 1991 Aug;137(8):1775-82. doi: 10.1099/00221287-137-8-1775.
7
8
The TonB-dependent uptake of pyrroloquinoline-quinone (PQQ) and secretion of gluconate by Escherichia coli K-12.
Mol Microbiol. 2022 Oct;118(4):417-425. doi: 10.1111/mmi.14975. Epub 2022 Sep 14.
10
Detergent-shock response in enteric bacteria.
Mol Microbiol. 1992 Apr;6(8):957-61. doi: 10.1111/j.1365-2958.1992.tb02161.x.

引用本文的文献

1
Longer Ubiquinone Side Chains Contribute to Enhanced Farnesol Resistance in Yeasts.
Microorganisms. 2020 Oct 23;8(11):1641. doi: 10.3390/microorganisms8111641.
2
Growth and Extended Survival of O157:H7 in Soil Organic Matter.
Front Microbiol. 2018 Apr 23;9:762. doi: 10.3389/fmicb.2018.00762. eCollection 2018.
3
Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase.
J Bacteriol. 2016 Dec 28;199(2). doi: 10.1128/JB.00708-16. Print 2017 Jan 15.
6
Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster.
J Ind Microbiol Biotechnol. 2010 Jun;37(6):575-80. doi: 10.1007/s10295-010-0703-z. Epub 2010 Mar 6.
7
Escherichia coli O157:H7 and other E. coli strains share physiological properties associated with intestinal colonization.
Appl Environ Microbiol. 2009 Jul;75(13):4633-5. doi: 10.1128/AEM.00003-09. Epub 2009 May 1.
8
Genomic diversity within the Enterobacter cloacae complex.
PLoS One. 2008 Aug 21;3(8):e3018. doi: 10.1371/journal.pone.0003018.
9
Sodium dodecyl sulfate hypersensitivity of clpP and clpB mutants of Escherichia coli.
Appl Environ Microbiol. 2002 Aug;68(8):4117-21. doi: 10.1128/AEM.68.8.4117-4121.2002.
10
What's for dinner?: Entner-Doudoroff metabolism in Escherichia coli.
J Bacteriol. 1998 Jul;180(14):3495-502. doi: 10.1128/JB.180.14.3495-3502.1998.

本文引用的文献

1
Growth of Enterobacter cloacae in the presence of 25% sodium dodecyl sulfate.
Appl Environ Microbiol. 1980 Nov;40(5):973-6. doi: 10.1128/aem.40.5.973-976.1980.
2
Prevalence of extreme detergent resistance among the Enterobacteriaceae.
Can J Microbiol. 1984 May;30(5):711-3. doi: 10.1139/m84-106.
4
Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrase.
J Bacteriol. 1967 May;93(5):1579-81. doi: 10.1128/jb.93.5.1579-1581.1967.
5
Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase.
J Bacteriol. 1967 May;93(5):1571-8. doi: 10.1128/jb.93.5.1571-1578.1967.
6
Gluconate metabolism in Escherichia coli.
J Bacteriol. 1967 Mar;93(3):941-9. doi: 10.1128/jb.93.3.941-949.1967.
7
6-phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene.
J Bacteriol. 1969 Dec;100(3):1296-301. doi: 10.1128/jb.100.3.1296-1301.1969.
8
Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli.
J Bacteriol. 1973 Jul;115(1):268-76. doi: 10.1128/jb.115.1.268-276.1973.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验