Lewis A, Marcus M A, Ehrenberg B, Crespi H
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853.
Proc Natl Acad Sci U S A. 1978 Oct;75(10):4642-6. doi: 10.1073/pnas.75.10.4642.
Resonance Raman spectroscopy of the retinylidene chromophore in various isotopically labeled membrane environments together with spectra of isotopically labeled model compounds demonstrates that a secondary protein interaction is present at the protonated Schiff base linkage in bacteriorhodopsin. The data indicate that although the interaction is present in all protonated bacteriorhodopsin species it is absent in unprotonated intermediates. Furthermore, kinetic resonance Raman spectroscopy has been used to monitor the dynamics of Schiff base deprotonation as a function of pH. All our results are consistent with lysine as the interacting group. A structure for the interaction is proposed in which the interacting protein group in an unprotonated configuration is complexed through the Schiff base proton to the Schiff base nitrogen. These data suggest a molecular mechanism for proton pumping and ion gate molecular regulation. In this mechanism, light causes electron redistribution in the retinylidene chromophore, which results in the deprotonation of an amino acid side chain with pK >10.2 +/- 0.3 (e.g., arginine). This induces subsequent retinal and protein conformational transitions which eventually lower the pK of the Schiff base complex from >12 before light absorption to 10.2 +/- 0.3 in microseconds after photon absorption. Finally, in this low pK state the complex can reprotonate the proton-deficient high pK group generated by light, and the complex is then reprotonated from the opposite side of the membrane.
在各种同位素标记的膜环境中视黄叉发色团的共振拉曼光谱以及同位素标记的模型化合物的光谱表明,细菌视紫红质中质子化席夫碱键处存在二级蛋白质相互作用。数据表明,虽然这种相互作用存在于所有质子化的细菌视紫红质物种中,但在未质子化的中间体中不存在。此外,动力学共振拉曼光谱已被用于监测席夫碱去质子化动力学随pH的变化。我们所有的结果都与赖氨酸作为相互作用基团一致。提出了一种相互作用结构,其中未质子化构型的相互作用蛋白质基团通过席夫碱质子与席夫碱氮络合。这些数据提示了质子泵浦和离子门分子调节的分子机制。在这种机制中,光导致视黄叉发色团中的电子重新分布,这导致pK>10.2±0.3的氨基酸侧链(例如精氨酸)去质子化。这引发随后的视网膜和蛋白质构象转变,最终使席夫碱复合物的pK从光吸收前的>12降低到光子吸收后微秒内的10.2±0.3。最后,在这种低pK状态下,复合物可以使光产生的质子缺乏的高pK基团重新质子化,然后复合物从膜的另一侧重新质子化。