Suppr超能文献

细菌视紫红质的可调谐激光共振拉曼光谱

Tunable laser resonance raman spectroscopy of bacteriorhodopsin.

作者信息

Lewis A, Spoonhower J, Bogomolni R A, Lozier R H, Stoeckenius W

出版信息

Proc Natl Acad Sci U S A. 1974 Nov;71(11):4462-6. doi: 10.1073/pnas.71.11.4462.

Abstract

Bacteriorhodopsin is a rhodopsin-like protein found in the cell membrane of Halobacterium halobium. It shows an absorption maximum at 570 nm and, in the light, undergoes cyclic spectral changes which include a relatively long-lived complex absorbing maximally at 412 nm. Excitation profiles have been obtained with several laser frequencies for two vibrations in the resonance Raman spectrum of bacteriorhodopsin. The results show that the Schiff base retinylidene lysine linkage is protonated in the 570 nm complex and that in the 412 nm complex it is unprotonated. The 412 nm complex must be present at appreciable concentrations when bacteriorhodopsin is exposed to high-energy argon ion laser light of the Raman spectrophotometer at room temperature. We conclude that the observed C=N stretch at 1622 cm(-1) in the room temperature spectra, which in an earlier study by Mendelsohn was interpreted as evidence for an unprotonated linkage in bacteriorhodopsin, results from the presence of the 412 nm complex.

摘要

细菌视紫红质是一种存在于嗜盐菌细胞膜中的视紫红质样蛋白质。它在570 nm处有最大吸收峰,在光照下会发生周期性光谱变化,其中包括在412 nm处有一个相对长寿命的最大吸收复合物。已获得了细菌视紫红质共振拉曼光谱中两种振动在几个激光频率下的激发光谱。结果表明,席夫碱视黄醛赖氨酸键在570 nm复合物中被质子化,而在412 nm复合物中未被质子化。当细菌视紫红质在室温下暴露于拉曼分光光度计的高能氩离子激光时,412 nm复合物必须以相当的浓度存在。我们得出结论,在室温光谱中观察到的1622 cm(-1)处的C=N伸缩振动,在门德尔松早期的一项研究中被解释为细菌视紫红质中未质子化键的证据,是由412 nm复合物的存在导致的。

相似文献

1
Tunable laser resonance raman spectroscopy of bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1974 Nov;71(11):4462-6. doi: 10.1073/pnas.71.11.4462.
10
Effect of lipid-protein interaction on the color of bacteriorhodopsin.
Biochim Biophys Acta. 1989 Feb 28;973(2):257-62. doi: 10.1016/s0005-2728(89)80430-x.

引用本文的文献

1
Engineered red Opto-mGluR6 Opsins, a red-shifted optogenetic excitation tool, an in vitro study.
PLoS One. 2024 Oct 24;19(10):e0311102. doi: 10.1371/journal.pone.0311102. eCollection 2024.
4
Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate.
PLoS One. 2018 Dec 26;13(12):e0209506. doi: 10.1371/journal.pone.0209506. eCollection 2018.
5
Raman Spectroscopic Analysis of Signaling Molecules-Dopamine Receptors Interactions in Living Cells.
ACS Omega. 2018 Nov 30;3(11):14849-14857. doi: 10.1021/acsomega.8b01727. Epub 2018 Nov 5.
6
Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.
Biochemistry. 2016 Apr 26;55(16):2371-80. doi: 10.1021/acs.biochem.6b00104. Epub 2016 Apr 14.
7
Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
Biochemistry. 2014 Jun 24;53(24):3961-70. doi: 10.1021/bi500445c. Epub 2014 Jun 16.
9
Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.
J Phys Chem B. 2012 Dec 20;116(50):14592-601. doi: 10.1021/jp309996a. Epub 2012 Dec 11.

本文引用的文献

2
Raman spectra of Schiff bases of retinal (models of visual photoreceptors).
J Am Chem Soc. 1971 Dec 15;93(25):6776-80. doi: 10.1021/ja00754a012.
3
Rhodopsin-like protein from the purple membrane of Halobacterium halobium.
Nat New Biol. 1971 Sep 29;233(39):149-52. doi: 10.1038/newbio233149a0.
6
Photophosphorylation in Halobacterium halobium.
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1234-8. doi: 10.1073/pnas.71.4.1234.
7
Functions of a new photoreceptor membrane.
Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853-7. doi: 10.1073/pnas.70.10.2853.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验