Department of Physiology and Biophysics, University of Illinois, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 1988 Sep;85(17):6358-61. doi: 10.1073/pnas.85.17.6358.
Time-resolved, flash-induced difference absorbance spectra (300-700 nm) at pH 10.5 and 5 degrees C for the bacteriorhodopsin photocycle fast and slow decaying forms of the M intermediate (M(f) and M(s), respectively) and R intermediate are reported. The main distinguishing features are as follows: For M(f), DeltaA(max) = 412 nm, a shoulder at 436 nm, no absorbance change at 350 nm; DeltaA(min) = 565 nm; DeltaA(412)/DeltaA(565) = 0.85. For M(s), DeltaA(max) = 412 nm, a shoulder at 386 nm; DeltaA(min) = 575 nm; DeltaA(412)/DeltaA(575) = 0.6. For R, DeltaA(max) = 336 and 350 nm (double peak), smaller peaks at 386 and 412 nm; DeltaA(min) = 585 nm; DeltaA(350)/DeltaA(585) = 0.2. The different difference spectra for M(f) and M(s) provide direct evidence that these species, initially identified by their kinetics, are physically distinct. With fast transient absorption spectroscopy, it was shown that R may form very fast, perhaps faster than the L intermediate decays. On the basis of the different bleaching peaks for M(f) and M(s), we propose that M(f) and M(s) are in independent photocycles formed from slightly different forms of bacteriorhodopsin. R may also be in a different photocycle. The different forms of bacteriorhodopsin are probably in dynamic equilibrium with their ratios, controlled by pH and temperature.
在 pH 值为 10.5 和 5°C 的条件下,报道了细菌视紫红质光循环快衰减形式(M(f))和慢衰减形式(M(s))以及 R 中间态的时间分辨、闪光诱导的差示吸收光谱(300-700nm)。主要区别特征如下:对于 M(f),ΔA(max) = 412nm,在 436nm 处有一个肩峰,在 350nm 处没有吸光度变化;ΔA(min) = 565nm;ΔA(412)/ΔA(565) = 0.85。对于 M(s),ΔA(max) = 412nm,在 386nm 处有一个肩峰;ΔA(min) = 575nm;ΔA(412)/ΔA(575) = 0.6。对于 R,ΔA(max) = 336nm 和 350nm(双峰),在 386nm 和 412nm 处有较小的峰;ΔA(min) = 585nm;ΔA(350)/ΔA(585) = 0.2。M(f)和 M(s)的不同差示光谱提供了直接证据,表明这些最初通过动力学鉴定的物种在物理上是不同的。通过快速瞬态吸收光谱,表明 R 可能形成得非常快,也许比 L 中间态的衰减还要快。基于 M(f)和 M(s)的不同漂白峰,我们提出 M(f)和 M(s)是由稍微不同形式的细菌视紫红质形成的独立光循环。R 也可能处于不同的光循环中。不同形式的细菌视紫红质可能处于动态平衡状态,其比例由 pH 值和温度控制。