Long Mian, Chen Juan, Jiang Ning, Selvaraj Periasamy, McEver Rodger P, Zhu Cheng
National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.
Biophys J. 2006 Jul 1;91(1):352-63. doi: 10.1529/biophysj.106.082909. Epub 2006 Apr 7.
Rosetting, or forming a cell aggregate between a single target nucleated cell and a number of red blood cells (RBCs), is a simple assay for cell adhesion mediated by specific receptor-ligand interaction. For example, rosette formation between sheep RBC and human lymphocytes has been used to differentiate T cells from B cells. Rosetting assay is commonly used to determine the interaction of Fc gamma-receptors (FcgammaR) expressed on inflammatory cells and IgG coated on RBCs. Despite its wide use in measuring cell adhesion, the biophysical parameters of rosette formation have not been well characterized. Here we developed a probabilistic model to describe the distribution of rosette sizes, which is Poissonian. The average rosette size is predicted to be proportional to the apparent two-dimensional binding affinity of the interacting receptor-ligand pair and their site densities. The model has been supported by experiments of rosettes mediated by four molecular interactions: FcgammaRIII interacting with IgG, T cell receptor and coreceptor CD8 interacting with antigen peptide presented by major histocompatibility molecule, P-selectin interacting with P-selectin glycoprotein ligand 1 (PSGL-1), and L-selectin interacting with PSGL-1. The latter two are structurally similar and are different from the former two. Fitting the model to data enabled us to evaluate the apparent effective two-dimensional binding affinity of the interacting molecular pairs: 7.19x10(-5) microm4 for FcgammaRIII-IgG interaction, 4.66x10(-3) microm4 for P-selectin-PSGL-1 interaction, and 0.94x10(-3) microm4 for L-selectin-PSGL-1 interaction. These results elucidate the biophysical mechanism of rosette formation and enable it to become a semiquantitative assay that relates the rosette size to the effective affinity for receptor-ligand binding.
红细胞花环形成,即单个靶有核细胞与多个红细胞(RBC)之间形成细胞聚集体,是一种通过特异性受体-配体相互作用介导的细胞黏附的简单检测方法。例如,绵羊红细胞与人类淋巴细胞之间的花环形成已被用于区分T细胞和B细胞。红细胞花环形成检测通常用于确定炎症细胞上表达的Fcγ受体(FcgammaR)与包被在红细胞上的IgG之间的相互作用。尽管其在测量细胞黏附方面有广泛应用,但红细胞花环形成的生物物理参数尚未得到很好的表征。在此,我们开发了一个概率模型来描述花环大小的分布,其呈泊松分布。预计平均花环大小与相互作用的受体-配体对的表观二维结合亲和力及其位点密度成正比。该模型已得到由四种分子相互作用介导的花环实验的支持:FcgammaRIII与IgG相互作用、T细胞受体和共受体CD8与主要组织相容性分子呈递的抗原肽相互作用、P-选择素与P-选择素糖蛋白配体1(PSGL-1)相互作用以及L-选择素与PSGL-1相互作用。后两者在结构上相似,且与前两者不同。将模型与数据拟合使我们能够评估相互作用分子对的表观有效二维结合亲和力:FcgammaRIII-IgG相互作用为7.19×10^(-5) 微米^4,P-选择素-PSGL-1相互作用为4.66×10^(-3) 微米^4,L-选择素-PSGL-1相互作用为0.94×10^(-3) 微米^4。这些结果阐明了红细胞花环形成的生物物理机制,并使其能够成为一种将花环大小与受体-配体结合的有效亲和力相关联的半定量检测方法。