Suppr超能文献

肉毒中毒的实验室诊断

Laboratory diagnostics of botulism.

作者信息

Lindström Miia, Korkeala Hannu

机构信息

Department of Food and Environmental Hygiene, University of Helsinki, P.O. Box 66, 00014 University of Helsinki, Finland.

出版信息

Clin Microbiol Rev. 2006 Apr;19(2):298-314. doi: 10.1128/CMR.19.2.298-314.2006.

Abstract

Botulism is a potentially lethal paralytic disease caused by botulinum neurotoxin. Human pathogenic neurotoxins of types A, B, E, and F are produced by a diverse group of anaerobic spore-forming bacteria, including Clostridium botulinum groups I and II, Clostridium butyricum, and Clostridium baratii. The routine laboratory diagnostics of botulism is based on the detection of botulinum neurotoxin in the patient. Detection of toxin-producing clostridia in the patient and/or the vehicle confirms the diagnosis. The neurotoxin detection is based on the mouse lethality assay. Sensitive and rapid in vitro assays have been developed, but they have not yet been appropriately validated on clinical and food matrices. Culture methods for C. botulinum are poorly developed, and efficient isolation and identification tools are lacking. Molecular techniques targeted to the neurotoxin genes are ideal for the detection and identification of C. botulinum, but they do not detect biologically active neurotoxin and should not be used alone. Apart from rapid diagnosis, the laboratory diagnostics of botulism should aim at increasing our understanding of the epidemiology and prevention of the disease. Therefore, the toxin-producing organisms should be routinely isolated from the patient and the vehicle. The physiological group and genetic traits of the isolates should be determined.

摘要

肉毒中毒是一种由肉毒杆菌神经毒素引起的潜在致命性麻痹疾病。A、B、E和F型人类致病性神经毒素由多种厌氧产芽孢细菌产生,包括I群和II群肉毒梭菌、丁酸梭菌和巴氏梭菌。肉毒中毒的常规实验室诊断基于对患者体内肉毒杆菌神经毒素的检测。在患者和/或载体中检测产毒素梭菌可确诊。神经毒素检测基于小鼠致死试验。已开发出灵敏且快速的体外检测方法,但尚未在临床和食品基质上进行充分验证。肉毒梭菌的培养方法发展不完善,且缺乏有效的分离和鉴定工具。针对神经毒素基因的分子技术是检测和鉴定肉毒梭菌的理想方法,但它们无法检测生物活性神经毒素,不应单独使用。除了快速诊断外,肉毒中毒的实验室诊断应旨在增进我们对该疾病流行病学和预防的了解。因此,应常规从患者和载体中分离产毒素生物体。应确定分离株的生理群和遗传特征。

相似文献

1
Laboratory diagnostics of botulism.
Clin Microbiol Rev. 2006 Apr;19(2):298-314. doi: 10.1128/CMR.19.2.298-314.2006.
2
Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.
Appl Environ Microbiol. 2017 Aug 31;83(18). doi: 10.1128/AEM.00806-17. Print 2017 Sep 15.
3
Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples.
Appl Environ Microbiol. 2009 Oct;75(20):6457-61. doi: 10.1128/AEM.00805-09. Epub 2009 Aug 14.
4
Methods for detection of Clostridium botulinum toxin in foods.
J Food Prot. 2005 Jun;68(6):1256-63. doi: 10.4315/0362-028x-68.6.1256.
9
Botulism diagnostics: from clinical symptoms to in vitro assays.
Crit Rev Microbiol. 2007 Apr-Jun;33(2):109-25. doi: 10.1080/10408410701364562.
10
Dual toxin-producing strain of Clostridium botulinum type Bf isolated from a California patient with infant botulism.
J Clin Microbiol. 2004 Apr;42(4):1713-5. doi: 10.1128/JCM.42.4.1713-1715.2004.

引用本文的文献

2
Overview of botulinum neurotoxin-producing clostridia in soils in France.
Microbiol Spectr. 2025 Aug 5;13(8):e0011425. doi: 10.1128/spectrum.00114-25. Epub 2025 Jun 18.
3
Isolation of type C from a wound in a pig.
J Vet Diagn Invest. 2025 Jul;37(4):694-696. doi: 10.1177/10406387251330885. Epub 2025 Apr 10.
5
Wearable Temperature Sensor Enhanced Volatilomics Technique for Swift and Convenient Detection of Latrogenic Botulism.
Adv Sci (Weinh). 2025 Feb;12(6):e2411738. doi: 10.1002/advs.202411738. Epub 2024 Dec 16.
6
Diagnosis of botulism in mammals aided by toxin ELISA and C and D gene RT-PCRs with an emphasis on farm animals.
Vet Res Commun. 2024 Dec;48(6):3803-3812. doi: 10.1007/s11259-024-10498-7. Epub 2024 Sep 17.
7
A neonatal mouse model of meconium peritonitis generated using human meconium slurry.
Pediatr Res. 2025 Apr;97(5):1742-1749. doi: 10.1038/s41390-024-03470-3. Epub 2024 Aug 21.
8
Selection of Candidate Monoclonal Antibodies for Therapy of Botulinum Toxin Type A Intoxications.
Toxins (Basel). 2024 Jun 21;16(7):284. doi: 10.3390/toxins16070284.
10
Aminopyridines Restore Ventilation and Reverse Respiratory Acidosis at Late Stages of Botulism in Mice.
J Pharmacol Exp Ther. 2024 Jan 17;388(2):637-646. doi: 10.1124/jpet.123.001773.

本文引用的文献

1
Amplified Immunoassay ELISA-ELCA for Measuring Clostridium botulinum Type E Neurotoxin in Fish Fillets.
J Food Prot. 1994 Nov;57(11):985-990. doi: 10.4315/0362-028X-57.11.985.
2
An ELISA for Detection of Botulinal Toxin Types A, B, and E in Inoculated Food Samples.
J Food Prot. 1993 Oct;56(10):856-861. doi: 10.4315/0362-028X-56.10.856.
3
Heat Resistance of Clostridium botulinum Type G in Phosphate Buffer.
J Food Prot. 1984 Jun;47(6):463-466. doi: 10.4315/0362-028X-47.6.463.
5
Heat Resistance of Spores of Non-Proteolytic Type B Clostridium botulinum.
J Food Prot. 1982 Aug;45(10):909-912. doi: 10.4315/0362-028X-45.10.909.
6
The effect of recovery medium on the estimated heat-inactivation of spores of non-proteolytic Clostridium botulinum.
Lett Appl Microbiol. 1992 Oct;15(4):146-151. doi: 10.1111/j.1472-765X.1992.tb00749.x.
7
Factors affecting growth from heat-treated spores of non-proteolytic Clostridium botulinum.
Lett Appl Microbiol. 1992 Oct;15(4):152-155. doi: 10.1111/j.1472-765X.1992.tb00750.x.
8
Bichat guidelines for the clinical management of botulism and bioterrorism-related botulism.
Euro Surveill. 2004 Dec;9(12):31-32. doi: 10.2807/esm.09.12.00505-en.
9
Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
Int J Food Microbiol. 2006 Apr 15;108(1):92-104. doi: 10.1016/j.ijfoodmicro.2005.11.003. Epub 2006 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验