Suppr超能文献

癫痫发作期间的行波与脑电图模式:基于积分发放神经网络的分析

Travelling waves and EEG patterns during epileptic seizure: analysis with an integrate-and-fire neural network.

作者信息

Ursino Mauro, La Cara Giuseppe-Emiliano

机构信息

Department of Electronics, Computer Science, and Systems, University of Bologna, viale Risorgimento 2, I-40136 Bologna, Cesena, Italy.

出版信息

J Theor Biol. 2006 Sep 7;242(1):171-87. doi: 10.1016/j.jtbi.2006.02.012. Epub 2006 Apr 19.

Abstract

Epilepsy is characterized by paradoxical patterns of neural activity. They may cause different types of electroencephalogram (EEG), which dynamically change in shape and frequency content during the temporal evolution of seizure. It is generally assumed that these epileptic patterns may originate in a network of strongly interconnected neurons, when excitation dominates over inhibition. The aim of this work is to use a neural network composed of 50 x 50 integrate-and-fire neurons to analyse which parameter alterations, at the level of synapse topology, may induce network instability and epileptic-like discharges, and to study the corresponding spatio-temporal characteristics of electrical activity in the network. We assume that a small group of central neurons is stimulated by a depolarizing current (epileptic focus) and that neurons are connected via a Mexican-hat topology of synapses. A signal representative of cortical EEG (ECoG) is simulated by summing the membrane potential changes of all neurons. A sensitivity analysis on the parameters describing the synapse topology shows that an increase in the strength and in spatial extension of excitatory vs. inhibitory synapses may cause the occurrence of travelling waves, which propagate along the network. These propagating waves may cause EEG patterns with different shape and frequency, depending on the particular parameter set used during the simulations. The resulting model EEG signals include irregular rhythms with large amplitude and a wide frequency content, low-amplitude high-frequency rapid discharges, isolated or repeated bursts, and low-frequency quasi-sinusoidal patterns. A slow progressive temporal variation in a single parameter may cause the transition from one pattern to another, thus generating a highly non-stationary signal which resembles that observed during ECoG measurements. These results may help to elucidate the mechanisms at the basis of some epileptic discharges, and to relate rapid changes in EEG patterns with the underlying alterations at the network level.

摘要

癫痫的特征是神经活动的反常模式。它们可能导致不同类型的脑电图(EEG),在癫痫发作的时间演变过程中,其形状和频率成分会动态变化。一般认为,当兴奋超过抑制时,这些癫痫模式可能起源于一个由紧密相连的神经元组成的网络。这项工作的目的是使用一个由50×50个积分发放神经元组成的神经网络,来分析在突触拓扑层面上哪些参数变化可能诱发网络不稳定和癫痫样放电,并研究网络中电活动相应的时空特征。我们假设一小群中央神经元受到去极化电流(癫痫病灶)的刺激,并且神经元通过墨西哥帽突触拓扑结构相连。通过对所有神经元的膜电位变化进行求和来模拟代表皮质脑电图(ECoG)的信号。对描述突触拓扑的参数进行敏感性分析表明,兴奋性与抑制性突触的强度和空间扩展增加可能会导致行波的出现,行波会沿着网络传播。根据模拟过程中使用的特定参数集,这些传播的波可能会导致具有不同形状和频率的脑电图模式。产生的模型脑电图信号包括具有大振幅和宽频率成分的不规则节律、低振幅高频快速放电、孤立或重复的爆发以及低频准正弦模式。单个参数的缓慢渐进性时间变化可能会导致从一种模式转变为另一种模式,从而产生一个高度非平稳的信号,类似于在ECoG测量中观察到的信号。这些结果可能有助于阐明某些癫痫放电背后的机制,并将脑电图模式的快速变化与网络层面的潜在改变联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验