Suppr超能文献

根据Q(II)相晶胞尺寸确定磷脂的高斯曲率与弯曲弹性模量之比。

Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from Q(II) phase unit cell dimensions.

作者信息

Siegel David P

机构信息

Givaudan, Inc., Cincinnati, Ohio, USA.

出版信息

Biophys J. 2006 Jul 15;91(2):608-18. doi: 10.1529/biophysj.106.085225. Epub 2006 Apr 28.

Abstract

A method is presented for measuring M, the ratio of the Gaussian (saddle splay) elastic modulus to the bending elastic modulus of a lipid monolayer. The ratio M is determined from measurements of the equilibrium bicontinuous inverted cubic (Q(II)) phase unit cell size in excess water as a function of temperature. The analysis includes the effect of a curvature elastic term that is second-order in the Gaussian curvature, K. Preliminary results using data on DOPE-Me validate the method. The fitted value of M is within 8% of the value estimated in an earlier treatment. The method can be used to measure changes in M due to addition of exogenous lipids and peptides to a host lipid system. The Gaussian elastic modulus has a substantial effect on the stability of fusion intermediates (stalks, hemifusion diaphragms, and fusion pores). Studying the effects of peptides and different lipids on M via this method may yield insights into how fusion protein moieties stabilize intermediates in membrane fusion in vivo. The contribution of the K2 curvature elastic term to the free energy of Q(II) phase and fusion pores explains some features of fusion pore stability and dynamics, and some peculiar observations concerning the mechanism of L(alpha)/Q(II) phase transitions.

摘要

本文提出了一种测量M的方法,M为脂质单层的高斯(鞍形展布)弹性模量与弯曲弹性模量之比。通过测量过量水中平衡双连续反立方(Q(II))相晶胞尺寸随温度的变化来确定比值M。分析中考虑了高斯曲率K的二阶曲率弹性项的影响。使用DOPE-Me的数据得到的初步结果验证了该方法。M的拟合值与早期处理中估计的值相差在8%以内。该方法可用于测量由于向主体脂质体系中添加外源脂质和肽而导致的M的变化。高斯弹性模量对融合中间体(茎、半融合隔膜和融合孔)的稳定性有重大影响。通过该方法研究肽和不同脂质对M的影响,可能有助于深入了解融合蛋白部分如何在体内膜融合过程中稳定中间体。K2曲率弹性项对Q(II)相和融合孔自由能的贡献解释了融合孔稳定性和动力学的一些特征,以及关于L(α)/Q(II)相变机制的一些特殊观察结果。

相似文献

1
Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from Q(II) phase unit cell dimensions.
Biophys J. 2006 Jul 15;91(2):608-18. doi: 10.1529/biophysj.106.085225. Epub 2006 Apr 28.
3
The Gaussian curvature elastic energy of intermediates in membrane fusion.
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.
4
Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
Biophys J. 2008 May 15;94(10):3987-95. doi: 10.1529/biophysj.107.118034. Epub 2008 Jan 30.
6
Stalk phase formation: effects of dehydration and saddle splay modulus.
Biophys J. 2004 Oct;87(4):2508-21. doi: 10.1529/biophysj.103.038075.
7
Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183815. doi: 10.1016/j.bbamem.2021.183815. Epub 2021 Nov 5.
10
Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes.
Biophys J. 1996 Nov;71(5):2623-32. doi: 10.1016/S0006-3495(96)79454-7.

引用本文的文献

1
Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2301067120. doi: 10.1073/pnas.2301067120. Epub 2023 Jun 26.
2
Curvature Energetics Determined by Alchemical Simulation on Four Topologically Distinct Lipid Phases.
J Phys Chem B. 2021 Feb 25;125(7):1815-1824. doi: 10.1021/acs.jpcb.0c09458. Epub 2021 Feb 11.
3
Protein-induced membrane curvature alters local membrane tension.
Biophys J. 2014 Aug 5;107(3):751-762. doi: 10.1016/j.bpj.2014.06.010.
4
Lipid sorting by ceramide and the consequences for membrane proteins.
Biophys J. 2012 May 2;102(9):2031-8. doi: 10.1016/j.bpj.2012.03.059.
5
Determining the Gaussian curvature modulus of lipid membranes in simulations.
Biophys J. 2012 Mar 21;102(6):1403-10. doi: 10.1016/j.bpj.2012.02.013. Epub 2012 Mar 20.
6
Minimum membrane bending energies of fusion pores.
J Membr Biol. 2009 Oct;231(2-3):101-15. doi: 10.1007/s00232-009-9209-x. Epub 2009 Oct 29.
7
The Gaussian curvature elastic energy of intermediates in membrane fusion.
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.
8
The biophysical function of pulmonary surfactant.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):244-55. doi: 10.1016/j.resp.2008.05.018. Epub 2008 Jul 16.
9
Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
Biophys J. 2008 May 15;94(10):3987-95. doi: 10.1529/biophysj.107.118034. Epub 2008 Jan 30.

本文引用的文献

1
Dynamics of structural transformations between lamellar and inverse bicontinuous cubic lyotropic phases.
Phys Rev Lett. 2006 Mar 17;96(10):108102. doi: 10.1103/PhysRevLett.96.108102. Epub 2006 Mar 16.
2
How proteins produce cellular membrane curvature.
Nat Rev Mol Cell Biol. 2006 Jan;7(1):9-19. doi: 10.1038/nrm1784.
4
The many mechanisms of viral membrane fusion proteins.
Curr Top Microbiol Immunol. 2005;285:25-66. doi: 10.1007/3-540-26764-6_2.
5
De novo design of conformationally flexible transmembrane peptides driving membrane fusion.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14776-81. doi: 10.1073/pnas.0405175101. Epub 2004 Sep 29.
6
Stalk phase formation: effects of dehydration and saddle splay modulus.
Biophys J. 2004 Oct;87(4):2508-21. doi: 10.1529/biophysj.103.038075.
8
The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion.
J Membr Biol. 2003 Oct 1;195(3):165-82. doi: 10.1007/s00232-003-0617-z.
9
Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model.
Biophys J. 2003 Dec;85(6):3813-27. doi: 10.1016/S0006-3495(03)74796-1.
10
Membrane fission: model for intermediate structures.
Biophys J. 2003 Jul;85(1):85-96. doi: 10.1016/S0006-3495(03)74457-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验