Suppr超能文献

澳大利亚格拉德斯通地区的天气变化、潮汐与巴马森林病毒病

Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia.

作者信息

Naish Suchithra, Hu Wenbiao, Nicholls Neville, Mackenzie John S, McMichael Anthony J, Dale Pat, Tong Shilu

机构信息

School of Public Health, Queensland University of Technology, Queensland, Australia.

出版信息

Environ Health Perspect. 2006 May;114(5):678-83. doi: 10.1289/ehp.8568.

Abstract

In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (b=0.15, p-value<0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (b=-1.03, p-value=0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

摘要

在本研究中,我们考察了天气变化和潮汐对巴马森林病毒(BFV)疾病传播的影响,并为澳大利亚Gladstone地区的BFV疾病开发了一种基于天气的预测模型。我们使用季节性自回归积分移动平均(SARIMA)模型,在通过季节性差分使响应变量和解释变量的时间序列数据平稳之后,确定天气变量对BFV传播的贡献。我们分别从昆士兰卫生部、澳大利亚气象局、昆士兰运输部和澳大利亚统计局获取了1992年1月至2001年12月Gladstone地区BFV病例的月度计数、天气变量(例如,平均最低和最高温度、总降雨量和平均相对湿度)、高潮和低潮以及人口规模的数据。SARIMA模型显示,最低温度的5个月移动平均值(b = 0.15,p值<0.001)与BFV疾病在统计上显著正相关,而当月的高潮(b = -1.03,p值 = 0.04)与BFV疾病在统计上显著负相关。然而,未发现其他变量存在显著关联。这些结果可应用于预测BFV疾病的发生,并用于在BFV的控制和预防中利用公共卫生资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/1459919/4ff8924f09c9/ehp0114-000678f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验