用于检测癌症网络中混沌吸引子的动力系统方法综述。

A review of dynamical systems approaches for the detection of chaotic attractors in cancer networks.

作者信息

Uthamacumaran Abicumaran

机构信息

Concordia University, Montreal, QC, Canada.

出版信息

Patterns (N Y). 2021 Apr 9;2(4):100226. doi: 10.1016/j.patter.2021.100226.

Abstract

Cancers are complex dynamical systems. They remain the leading cause of disease-related pediatric mortality in North America. To overcome this burden, we must decipher the state-space attractor dynamics of gene expression patterns and protein oscillations orchestrated by cancer stemness networks. The review provides an overview of dynamical systems theory to steer cancer research in pattern science. While most of our current tools in network medicine rely on statistical correlation methods, causality inference remains primitively developed. As such, a survey of attractor reconstruction methods and machine algorithms for the detection of causal structures applicable in experimentally derived time series cancer datasets is presented. A toolbox of complex systems approaches are discussed for reconstructing the signaling state space of cancer networks, interpreting causal relationships in their time series gene expression patterns, and assisting clinical decision making in computational oncology. As a proof of concept, the applicability of some algorithms are demonstrated on pediatric brain cancer datasets and the requirement of their time series analysis is highlighted.

摘要

癌症是复杂的动态系统。在北美,它们仍然是与疾病相关的儿科死亡的主要原因。为了克服这一负担,我们必须破译由癌症干性网络精心编排的基因表达模式和蛋白质振荡的状态空间吸引子动力学。这篇综述概述了动态系统理论,以引导模式科学中的癌症研究。虽然我们目前在网络医学中的大多数工具都依赖于统计相关方法,但因果推断仍处于初步发展阶段。因此,本文介绍了一系列吸引子重建方法和机器学习算法,用于检测适用于实验得出的时间序列癌症数据集的因果结构。讨论了一个复杂系统方法工具箱,用于重建癌症网络的信号状态空间,解释其时间序列基因表达模式中的因果关系,并协助计算肿瘤学中的临床决策。作为概念验证,在儿科脑癌数据集上展示了一些算法的适用性,并强调了对其进行时间序列分析的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3581/8085613/001b94ce016a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索